299 research outputs found
The parameter space of graphene chemical vapor deposition on polycrystalline Cu
A systematic study on the parameter space of graphene CVD on polycrystalline Cu foils is
presented, aiming at a more fundamental process rationale in particular regarding the choice
of carbon precursor and mitigation of Cu sublimation. CH4 as precursor requires H2 dilution
and temperatures ≥1000°C to keep the Cu surface reduced and yield a high quality, complete
monolayer graphene coverage. The H2 atmosphere etches as-grown graphene, hence
maintaining a balanced CH4/H2 ratio is critical. Such balance is more easily achieved at low
pressure conditions, at which however Cu sublimation reaches deleterious levels. In contrast,
C6H6 as precursor requires no reactive diluent and consistently gives similar graphene quality
at 100-150°C lower temperatures. The lower process temperature and more robust processing
conditions allow the problem of Cu sublimation to be effectively addressed. Graphene
formation is not inherently self-limited to a monolayer for any of the precursors. Rather, the
higher the supplied carbon chemical potential the higher the likelihood of film inhomogeneity
and primary and secondary multilayer graphene nucleation. For the latter, domain boundaries
of the inherently polycrystalline CVD graphene offer pathways for a continued carbon supply
to the catalyst. Graphene formation is significantly affected by the Cu crystallography, i.e. the
evolution of microstructure and texture of the catalyst template form an integral part of the
CVD process.S.H. acknowledges funding from ERC grant InsituNANO (n°279342) and from EPSRC
(Grant Nr. EP/H047565/1). P.R.K. acknowledges funding from the Cambridge
Commonwealth Trust and C.D. acknowledges funding from Royal Society.This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/jp303597m
A Minimal Model of Signaling Network Elucidates Cell-to-Cell Stochastic Variability in Apoptosis
Signaling networks are designed to sense an environmental stimulus and adapt
to it. We propose and study a minimal model of signaling network that can sense
and respond to external stimuli of varying strength in an adaptive manner. The
structure of this minimal network is derived based on some simple assumptions
on its differential response to external stimuli. We employ stochastic
differential equations and probability distributions obtained from stochastic
simulations to characterize differential signaling response in our minimal
network model. We show that the proposed minimal signaling network displays two
distinct types of response as the strength of the stimulus is decreased. The
signaling network has a deterministic part that undergoes rapid activation by a
strong stimulus in which case cell-to-cell fluctuations can be ignored. As the
strength of the stimulus decreases, the stochastic part of the network begins
dominating the signaling response where slow activation is observed with
characteristic large cell-to-cell stochastic variability. Interestingly, this
proposed stochastic signaling network can capture some of the essential
signaling behaviors of a complex apoptotic cell death signaling network that
has been studied through experiments and large-scale computer simulations. Thus
we claim that the proposed signaling network is an appropriate minimal model of
apoptosis signaling. Elucidating the fundamental design principles of complex
cellular signaling pathways such as apoptosis signaling remains a challenging
task. We demonstrate how our proposed minimal model can help elucidate the
effect of a specific apoptotic inhibitor Bcl-2 on apoptotic signaling in a
cell-type independent manner. We also discuss the implications of our study in
elucidating the adaptive strategy of cell death signaling pathways.Comment: 9 pages, 6 figure
Associations between fruit and vegetable intake, leisure-time physical activity, sitting time and self-rated health among older adults : cross-sectional data from the WELL study
BackgroundLifestyle behaviours, such as healthy diet, physical activity and sedentary behaviour, are key elements of healthy ageing and important modifiable risk factors in the prevention of chronic diseases. Little is known about the relationship between these behaviours in older adults. The purpose of this study was to explore the relationship between fruit and vegetable (F&V) intake, leisure-time physical activity (LTPA) and sitting time (ST), and their association with self-rated health in older adults.MethodsThis cross-sectional study comprised 3,644 older adults (48% men) aged 55-65 years, who participated in the Wellbeing, Eating and Exercise for a Long Life ("WELL") study. Respondents completed a postal survey about their health and their eating and physical activity behaviours in 2010 (38% response rate). Spearman\u27s coefficient (rho) was used to evaluate the relationship between F&V intake, LTPA and ST. Their individual and shared associations with self-rated health were examined using ordinal logistic regression models, stratified by sex and adjusted for confounders (BMI, smoking, long-term illness and socio-demographic characteristics).ResultsThe correlations between F&V intake, LTPA and ST were low. F&V intake and LTPA were positively associated with self-rated health. Each additional serving of F&V or MET-hour of LTPA were associated with approximately 10% higher likelihood of reporting health as good or better among women and men. The association between ST and self-rated health was not significant in the multivariate analysis. A significant interaction was found (ST*F&V intake). The effect of F&V intake on self-rated health increased with increasing ST in women, whereas the effect decreased with increasing ST in men.ConclusionThis study contributes to the scarce literature related to lifestyle behaviours and their association with health indicators among older adults. The findings suggest that a modest increase in F&V intake, or LTPA could have a marked effect on the health of older adults. Further research is needed to fully understand the correlates and determinants of lifestyle behaviours, particularly sitting time, in this age group
Factors Associated with herb and dietary supplement use by young adults in the United States
<p>Abstract</p> <p>Background</p> <p>Little is known about the association between use of herbs and dietary supplements (HDS) and lifestyle/behavior factors in young adults in the US.</p> <p>Methods</p> <p>Analyzing the 2002 National Health Interview Survey (NHIS), we examined the patterns of HDS (excluding vitamins/minerals) use among young adults in the United States using descriptive statistics and logistic regression.</p> <p>Results</p> <p>In our sample of 18 to 30 year olds (n = 6666), 26% were current smokers, 24% were moderate/heavy drinkers, 43% had high physical activity, and 54% and 76% use prescription and over the counter (OTC) medications respectively. Non-vitamin, non-mineral HDS was used by 17% of the overall sample in the last 12 months. In the multivariable analysis, the lifestyle and behavioral factors associated with HDS use include: current smoking (odds ratio 1.41 95% CI [1.16–1.72]); being a former smoker (1.50 [1.15–1.95]); moderate/heavy alcohol use (2.02 [1.53–2.65]); high physical activity levels (2.45 [1.98–3.03]); and prescription medication use (1.51 [1.26–1.81]). Among HDS users, only 24% discussed their use with a health care professional.</p> <p>Conclusion</p> <p>Nearly one in five young adults report using non-vitamin/non-mineral HDS.</p
Out-of-equilibrium physics in driven dissipative coupled resonator arrays
Coupled resonator arrays have been shown to exhibit interesting many- body
physics including Mott and Fractional Hall states of photons. One of the main
differences between these photonic quantum simulators and their cold atoms
coun- terparts is in the dissipative nature of their photonic excitations. The
natural equi- librium state is where there are no photons left in the cavity.
Pumping the system with external drives is therefore necessary to compensate
for the losses and realise non-trivial states. The external driving here can
easily be tuned to be incoherent, coherent or fully quantum, opening the road
for exploration of many body regimes beyond the reach of other approaches. In
this chapter, we review some of the physics arising in driven dissipative
coupled resonator arrays including photon fermionisa- tion, crystallisation, as
well as photonic quantum Hall physics out of equilibrium. We start by briefly
describing possible experimental candidates to realise coupled resonator arrays
along with the two theoretical models that capture their physics, the
Jaynes-Cummings-Hubbard and Bose-Hubbard Hamiltonians. A brief review of the
analytical and sophisticated numerical methods required to tackle these systems
is included.Comment: Chapter that appeared in "Quantum Simulations with Photons and
Polaritons: Merging Quantum Optics with Condensed Matter Physics" edited by
D.G.Angelakis, Quantum Science and Technology Series, Springer 201
The Wor1-like Protein Fgp1 Regulates Pathogenicity, Toxin Synthesis and Reproduction in the Phytopathogenic Fungus Fusarium graminearum
WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity determents in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is required for pathogenicity and expression of key plant effector proteins. F. graminearum, an important pathogen of cereals, is not known to employ switching and no effector proteins from F. graminearum have been found to date that are required for infection. In this study, the potential role of the WOR1-like gene in pathogenesis was tested in this toxigenic fungus. Deletion of the WOR1 ortholog (called FGP1) in F. graminearum results in greatly reduced pathogenicity and loss of trichothecene toxin accumulation in infected wheat plants and in vitro. The loss of toxin accumulation alone may be sufficient to explain the loss of pathogenicity to wheat. Under toxin-inducing conditions, expression of genes for trichothecene biosynthesis and many other genes are not detected or detected at lower levels in Δfgp1 strains. FGP1 is also involved in the developmental processes of conidium formation and sexual reproduction and modulates a morphological change that accompanies mycotoxin production in vitro. The Wor1-like proteins in Fusarium species have highly conserved N-terminal regions and remarkably divergent C-termini. Interchanging the N- and C- terminal portions of proteins from F. oxysporum and F. graminearum resulted in partial to complete loss of function. Wor1-like proteins are conserved but have evolved to regulate pathogenicity in a range of fungi, likely by adaptations to the C-terminal portion of the protein
Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond
We review recent developments in the physics of ultracold atomic and
molecular gases in optical lattices. Such systems are nearly perfect
realisations of various kinds of Hubbard models, and as such may very well
serve to mimic condensed matter phenomena. We show how these systems may be
employed as quantum simulators to answer some challenging open questions of
condensed matter, and even high energy physics. After a short presentation of
the models and the methods of treatment of such systems, we discuss in detail,
which challenges of condensed matter physics can be addressed with (i)
disordered ultracold lattice gases, (ii) frustrated ultracold gases, (iii)
spinor lattice gases, (iv) lattice gases in "artificial" magnetic fields, and,
last but not least, (v) quantum information processing in lattice gases. For
completeness, also some recent progress related to the above topics with
trapped cold gases will be discussed.Comment: Review article. v2: published version, 135 pages, 34 figure
Fingerprinting the Substrate Specificity of M1 and M17 Aminopeptidases of Human Malaria, Plasmodium falciparum
Plasmodium falciparum, the causative agent of human malaria, expresses two aminopeptidases, PfM1AAP and PfM17LAP, critical to generating a free amino acid pool used by the intraerythrocytic stage of the parasite for proteins synthesis, growth and development. These exopeptidases are potential targets for the development of a new class of anti-malaria drugs.To define the substrate specificity of recombinant forms of these two malaria aminopeptidases we used a new library consisting of 61 fluorogenic substrates derived both from natural and unnatural amino acids. We obtained a detailed substrate fingerprint for recombinant forms of the enzymes revealing that PfM1AAP exhibits a very broad substrate tolerance, capable of efficiently hydrolyzing neutral and basic amino acids, while PfM17LAP has narrower substrate specificity and preferentially cleaves bulky, hydrophobic amino acids. The substrate library was also exploited to profile the activity of the native aminopeptidases in soluble cell lysates of P. falciparum malaria.This data showed that PfM1AAP and PfM17LAP are responsible for majority of the aminopeptidase activity in these extracts. These studies provide specific substrate and mechanistic information important for understanding the function of these aminopeptidases and could be exploited in the design of new inhibitors to specifically target these for anti-malaria treatment
Influence of advanced age of maternal grandmothers on Down syndrome
BACKGROUND: Down syndrome (DS) is the most common chromosomal anomaly associated with mental retardation. This is due to the occurrence of free trisomy 21 (92–95%), mosaic trisomy 21 (2–4%) and translocation (3–4%). Advanced maternal age is a well documented risk factor for maternal meiotic nondisjunction. In India three children with DS are born every hour and more DS children are given birth to by young age mothers than by advanced age mothers. Therefore, detailed analysis of the families with DS is needed to find out other possible causative factors for nondisjunction. METHODS: We investigated 69 families of cytogenetically confirmed DS children and constructed pedigrees of these families. We also studied 200 randomly selected families belonging to different religions as controls. Statistical analysis was carried out using logistic regression. RESULTS: Out of the 69 DS cases studied, 67 were free trisomy 21, two cases were mosaic trisomy 21 and there were none with translocation. The number of DS births was greater for the young age mothers compared with the advanced age mothers. It has also been recorded that young age mothers (18 to 29 years) born to their mothers at the age 30 years and above produced as high as 91.3% of children with DS. The logistic regression of case- control study of DS children revealed that the odds ratio of age of grandmother was significant when all the four variables were used once at a time. However, the effect of age of mother and father was smaller than the effect of age of maternal grandmother. Therefore, for every year of advancement of age of the maternal grandmother, the risk (odds) of birth of DS baby increases by 30%. CONCLUSION: Besides the known risk factors, mother's age, father's age, the age of the maternal grandmother at the time of birth of the mother is a risk factor for the occurrence of Down syndrome
- …