2,187 research outputs found
Low Scale Flavor Gauge Symmetries
We study the possibility of gauging the Standard Model flavor group. Anomaly
cancellation leads to the addition of fermions whose mass is inversely
proportional to the known fermion masses. In this case all flavor violating
effects turn out to be controlled roughly by the Standard Model Yukawa,
suppressing transitions for the light generations. Due to the inverted
hierarchy the scale of new gauge flavor bosons could be as low as the
electroweak scale without violating any existing bound but accessible at the
Tevatron and the LHC. The mechanism of flavor protection potentially provides
an alternative to Minimal Flavor Violation, with flavor violating effects
suppressed by hierarchy of scales rather than couplings.Comment: 24 pages + appendices; v2) Refs. added and numerical examples
  improved. Results unchanged; v3) small typos in appendix B correcte
On The Potential of Minimal Flavour Violation
Assuming the Minimal Flavour Violation hypothesis, we derive the general
scalar potential for fields whose background values are the Yukawa couplings.
We analyze the minimum of the potential and discuss the fine-tuning required to
dynamically generate the mass hierarchies and the mixings between different
quark generations. Two main cases are considered, corresponding to Yukawa
interactions being effective operators of dimension five or six (or,
equivalently, resulting from bi-fundamental and fundamental scalar fields,
respectively). At the renormalizable and classical level, no mixing is
naturally induced from dimension five Yukawa operators. On the contrary, from
dimension six Yukawa operators one mixing angle and a strong mass hierarchy
among the generations result.Comment: 33 pages, 6 figures; Note added in proof on the stability of the
  minima of the scalar potential; results unchanged; references adde
Minimal Flavour Violation for Leptoquarks
Scalar leptoquarks, with baryon and lepton number conserving interactions,
could have TeV scale masses, and be produced at colliders or contribute to a
wide variety of rare decays. In pursuit of some insight as to the most
sensitive search channels, We assume that the leptoquark-lepton-quark coupling
can be constructed from the known mass matrices. We estimate the rates for
selected rare processes in three cases: leptoquarks carrying lepton and quark
flavour, leptoquarks with quark flavour only, and unflavoured leptoquarks. We
find that leptoquark decay to top quarks is an interesting search channel.Comment: 17 pages, 2 figures, minor changes and references adde
Minimal flavour violation extensions of the seesaw
We analyze the most natural formulations of the minimal lepton flavour
violation hypothesis compatible with a type-I seesaw structure with three heavy
singlet neutrinos N, and satisfying the requirement of being predictive, in the
sense that all LFV effects can be expressed in terms of low energy observables.
We find a new interesting realization based on the flavour group  (being  and  respectively the SU(2) singlet and
doublet leptons). An intriguing feature of this realization is that, in the
normal hierarchy scenario for neutrino masses, it allows for sizeable
enhancements of  transitions with respect to LFV processes involving
the  lepton. We also discuss how the symmetries of the type-I seesaw
allow for a strong suppression of the N mass scale with respect to the scale of
lepton number breaking, without implying a similar suppression for possible
mechanisms of N productionComment: 14 pages, 6 figure
A Chemomechanical Model for Nuclear Morphology and Stresses during Cell Transendothelial Migration
It is now evident that the cell nucleus undergoes dramatic shape changes during important cellular processes such as cell transmigration through extracellular matrix and endothelium. Recent experimental data suggest that during cell transmigration the deformability of the nucleus could be a limiting factor, and the morphological and structural alterations that the nucleus encounters can perturb genomic organization that in turn influences cellular behavior. Despite its importance, a biophysical model that connects the experimentally observed nuclear morphological changes to the underlying biophysical factors during transmigration through small constrictions is still lacking. Here, we developed a universal chemomechanical model that describes nuclear strains and shapes and predicts thresholds for the rupture of the nuclear envelope and for nuclear plastic deformation during transmigration through small constrictions. The model includes actin contraction and cytosolic back pressure that squeeze the nucleus through constrictions and overcome the mechanical resistance from deformation of the nucleus and the constrictions. The nucleus is treated as an elastic shell encompassing a poroelastic material representing the nuclear envelope and inner nucleoplasm, respectively. Tuning the chemomechanical parameters of different components such as cell contractility and nuclear and matrix stiffnesses, our model predicts the lower bounds of constriction size for successful transmigration. Furthermore, treating the chromatin as a plastic material, our model faithfully reproduced the experimentally observed irreversible nuclear deformations after transmigration in lamin-A/C-deficient cells, whereas the wild-type cells show much less plastic deformation. Along with making testable predictions, which are in accord with our experiments and existing literature, our work provides a realistic framework to assess the biophysical modulators of nuclear deformation during cell transmigration
Non-resonant leptogenesis in seesaw models with an almost conserved B-L
We review the motivations and some results on leptogenesis in seesaw models
with an almost conserved lepton number. The paper is based on a talk given at
the 5th International Symposium on Symmetries in Subatomic Physics, SSP2012.Comment: 8 pages, 1 figure. Published in the proceedings of the 5th
  International Symposium on Symmetries in Subatomic Physics, SSP201
New physics searches at near detectors of neutrino oscillation experiments
We systematically investigate the prospects of testing new physics with tau
sensitive near detectors at neutrino oscillation facilities. For neutrino beams
from pion decay, from the decay of radiative ions, as well as from the decays
of muons in a storage ring at a neutrino factory, we discuss which effective
operators can lead to new physics effects. Furthermore, we discuss the present
bounds on such operators set by other experimental data currently available.
For operators with two leptons and two quarks we present the first complete
analysis including all relevant operators simultaneously and performing a
Markov Chain Monte Carlo fit to the data. We find that these effects can induce
tau neutrino appearance probabilities as large as O(10^{-4}), which are within
reach of forthcoming experiments. We highlight to which kind of new physics a
tau sensitive near detector would be most sensitive.Comment: 20 pages, 2 figures, REVTeX
The grinch who stole wisdom
Dr. Seuss is wise. How the Grinch Stole Christmas (Seuss, 1957) could serve as a parable for our time. It can also be seen as a roadmap for the development of contemplative wisdom. The abiding popularity of How the Grinch Stole Christmas additionally suggests that contemplative wisdom is more readily available to ordinary people, even children, than is normally thought. This matters because from the point of view of contemplatives in any of the world's philosophies or religions, people are confused about wisdom. The content of the nascent field of wisdom studies, they might say, is largely not wisdom at all but rather what it's like to live in a particular kind of prison cell, a well appointed cell perhaps, but not a place that makes possible either personal satisfaction or deep problem solving. I believe that what the contemplative traditions have to say is important; they offer a different orientation to what personal wisdom is, how to develop it, and how to use it in the world than is presently contained in either our popular culture or our sciences. In order to illustrate this I will examine, in some detail, one contemplative path within Buddhism. Buddhism is particularly useful in this respect because its practices are nontheistic and thus avoid many of the cultural landmines associated with the contemplative aspects of Western religions
Selective serotonin reuptake inhibitors in the treatment of generalized anxiety disorder
Selective serotonin reuptake inhibitors have proven efficacy in the treatment of panic disorder, obsessive–compulsive disorder, post-traumatic stress disorder and social anxiety disorder. Accumulating data shows that selective serotonin reuptake inhibitor treatment can also be efficacious in patients with generalized anxiety disorder. This review summarizes the findings of randomized controlled trials of selective serotonin reuptake inhibitor treatment for generalized anxiety disorder, examines the strengths and weaknesses of other therapeutic approaches and considers potential new treatments for patients with this chronic and disabling anxiety disorder
The Impact of Flavour Changing Neutral Gauge Bosons on B->X_s gamma
The branching ratio of the rare decay B->X_s gamma provides potentially
strong constraints on models beyond the Standard Model. Considering a general
scenario with new heavy neutral gauge bosons, present in particular in Z' and
gauge flavour models, we point out two new contributions to the B->X_s gamma
decay. The first one originates from one-loop diagrams mediated by gauge bosons
and heavy exotic quarks with electric charge -1/3. The second contribution
stems from the QCD mixing of neutral current-current operators generated by
heavy neutral gauge bosons and the dipole operators responsible for the B->X_s
gamma decay. The latter mixing is calculated here for the first time. We
discuss general sum rules which have to be satisfied in any model of this type.
We emphasise that the neutral gauge bosons in question could also significantly
affect other fermion radiative decays as well as non-leptonic two-body B
decays, epsilon'/epsilon, anomalous (g-2)_mu and electric dipole moments.Comment: 31 pages, 5 figures; version published on JHEP; added magic QCD
  numbers for flavour-violating Z gauge boson contribution to B -> X_s gamm
- …
