928 research outputs found
Bacteriophage ϕMAM1, a viunalikevirus, is a broad-host-range, high-efficiency generalized transducer that infects environmental and clinical isolates of the enterobacterial genera Serratia and Kluyvera.
Members of the enterobacterial genus Serratia are ecologically widespread, and some strains are opportunistic human pathogens. Bacteriophage ϕMAM1 was isolated on Serratia plymuthica A153, a biocontrol rhizosphere strain that produces the potently bioactive antifungal and anticancer haterumalide oocydin A. The ϕMAM1 phage is a generalized transducing phage that infects multiple environmental and clinical isolates of Serratia spp. and a rhizosphere strain of Kluyvera cryocrescens. Electron microscopy allowed classification of ϕMAM1 in the family Myoviridae. Bacteriophage ϕMAM1 is virulent, uses capsular polysaccharides as a receptor, and can transduce chromosomal markers at frequencies of up to 7 × 10(-6) transductants per PFU. We also demonstrated transduction of the complete 77-kb oocydin A gene cluster and heterogeneric transduction of a plasmid carrying a type III toxin-antitoxin system. These results support the notion of the potential ecological importance of transducing phages in the acquisition of genes by horizontal gene transfer. Phylogenetic analyses grouped ϕMAM1 within the ViI-like bacteriophages, and genomic analyses revealed that the major differences between ϕMAM1 and other ViI-like phages arise in a region encoding the host recognition determinants. Our results predict that the wider genus of ViI-like phages could be efficient transducing phages, and this possibility has obvious implications for the ecology of horizontal gene transfer, bacterial functional genomics, and synthetic biology.This research was supported by the EU Marie-Curie Intra-European Fellowship for Career
Development (FP7-PEOPLE-2011-IEF) grant number 298003. The Salmond lab is
supported by funding through the Biotechnology and Biological Sciences Research
Council (BBSRC, UK). We thank Hazel Aucken and Kornelia Smalla for kindly supplying
the environmental and clinical isolates. We would also like to thank Jeremy N. Skepper
(Department of Anatomy, University of Cambridge) for assistance in transmission electron
microscopy and Alison Rawlinson for technical support.This is the accepted manuscript. The final version is available from the American Society for Microbiology at http://aem.asm.org/content/80/20/6446.lon
Genome Sequence of Serratia plymuthica A153, a Model Rhizobacterium for the Investigation of the Synthesis and Regulation of Haterumalides, Zeamine, and Andrimid.
The rhizobacterium Serratia plymuthica A153 is a Gram-negative bacterium belonging to the family Enterobacteriaceae Here, we present the genome sequence of this strain, which produces multiple bioactive secondary metabolites, including the halogenated macrolide oocydin A, the polyamino antibiotic zeamine, and the bacterial acetyl-CoA carboxylase inhibitor andrimid.Work in the Salmond laboratory was supported by the Biotechnology and Biological Sciences Research Council (BBSRC, United Kingdom). Miguel A. Matilla was supported by the EU Marie-Curie intra-European Fellowship For Career Development (FP7-PEOPLE-2011-IEF) grant 298003 and the Spanish Ministry of Economy and Competitiveness Postdoctoral Research Program, Juan de la Cierva (JCI-2012-11815). The Tino Krell laboratory is supported by FEDER funds and Fondo Social Europeo through grants from the Junta de Andalucía (grant CVI-7335) and the Spanish Ministry for Economy and Competitiveness (grants BIO2013- 42297 and RTC-2014-1777-3).This is the final version of the article. It first appeared from the American Society for Microbiology via http://dx.doi.org/10.1128/genomeA.00373-1
Biosynthesis of the acetyl-CoA carboxylase-inhibiting antibiotic, andrimid in Serratia is regulated by Hfq and the LysR-type transcriptional regulator, AdmX.
Infections due to multidrug-resistant bacteria represent a major global health challenge. To combat this problem, new antibiotics are urgently needed and some plant-associated bacteria are a promising source. The rhizobacterium Serratia plymuthica A153 produces several bioactive secondary metabolites, including the anti-oomycete and antifungal haterumalide, oocydin A and the broad spectrum polyamine antibiotic, zeamine. In this study, we show that A153 produces a second broad spectrum antibiotic, andrimid. Using genome sequencing, comparative genomics and mutagenesis, we defined new genes involved in andrimid (adm) biosynthesis. Both the expression of the adm gene cluster and regulation of andrimid synthesis were investigated. The biosynthetic cluster is operonic and its expression is modulated by various environmental cues, including temperature and carbon source. Analysis of the genome context of the adm operon revealed a gene encoding a predicted LysR-type regulator, AdmX, apparently unique to Serratia strains. Mutagenesis and gene expression assays demonstrated that AdmX is a transcriptional activator of the adm gene cluster. At the post-transcriptional level, the expression of the adm cluster is positively regulated by the RNA chaperone, Hfq, in an RpoS-independent manner. Our results highlight the complexity of andrimid biosynthesis - an antibiotic with potential clinical and agricultural utility.We thank Kornelia Smalla and Ian Toth for the generous donation of bacterial strains. Work in the Salmond laboratory is supported by funding through the Biotechnology and Biological Sciences Research Council (UK). M.A.M. was supported by the EU Marie-Curie Intra-European Fellowship for Career Development (FP7-PEOPLE-2011-IEF) Grant No. 298003 and the Spanish Ministry of Economy and Competitiveness Postdoctoral Research Program, Juan de la Cierva (BVA-2009-0200). The Krell laboratory is supported by FEDER funds and Fondo Social Europeo through grants from the Junta de Andalucía (grant CVI-7335) and the Spanish Ministry for Economy 1and Competitiveness (grants BIO2013-42297 and RTC-2014-1777-3)
Biosynthesis of the antifungal haterumalide, oocydin A, in Serratia, and its regulation by quorum sensing, RpoS and Hfq.
Polyketides represent an important class of bioactive natural products with a broad range of biological activities. We identified recently a large trans-acyltransferase (AT) polyketide synthase gene cluster responsible for the biosynthesis of the antifungal, anti-oomycete and antitumor haterumalide, oocydin A (ooc). Using genome sequencing and comparative genomics, we show that the ooc gene cluster is widespread within biocontrol and phytopathogenic strains of the enterobacteria, Serratia and Dickeya. The analysis of in frame deletion mutants confirmed the role of a hydroxymethylglutaryl-coenzyme A synthase cassette, three flavin-dependent tailoring enzymes, a free-standing acyl carrier protein and two hypothetical proteins in oocydin A biosynthesis. The requirement of the three trans-acting AT domains for the biosynthesis of the macrolide was also demonstrated. Expression of the ooc gene cluster was shown to be positively regulated by an N-acyl-L-homoserine lactone-based quorum sensing system, but operating in a strain-dependent manner. At a post-transcriptional level, the RNA chaperone, Hfq, plays a key role in oocydin A biosynthesis. The Hfq-dependent regulation is partially mediated by the stationary phase sigma factor, RpoS, which was also shown to positively regulate the synthesis of the macrolide. Our results reveal differential regulation of the divergently transcribed ooc transcriptional units, highlighting the complexity of oocydin A production.This research was supported by the EU Marie-Curie Intra-European Fellowship for Career Development (FP7-PEOPLE-2011-IEF) Grant No. 298003. The Salmond laboratory is supported by funding through the Biotechnology and Biological Sciences Research Council, BBSRC (UK). Work with plant pathogens was carried out under DEFRA Licence No. 50864/197900/1.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/1462-2920.1283
Viunalikeviruses are environmentally common agents of horizontal gene transfer in pathogens and biocontrol bacteria.
Bacteriophages have been used as natural biocontrol and therapeutic agents, but also as biotechnological tools for bacterial engineering. We showed recently that the transducing bacteriophage ϕMAM1 is a ViI-like phage and a member of the new genus, 'Viunalikevirus'. Here, we show that four additional ViI-like phages and three new environmentally isolated viunalikeviruses, all infecting plant and human pathogens, are very efficient generalised transducers capable of transducing chromosomal markers at frequencies of up to 10(-4) transductants per plaque-forming unit. We also demonstrate the interstrain transduction of plasmids and chromosomal markers, including genes involved in anabolism, genes for virulence and genes encoding secondary metabolites involved in biocontrol. We propose that all viunalikeviruses are likely to perform efficient horizontal gene transfer. Viunalikeviruses therefore represent useful agents for functional genomics and bacterial engineering, and for chemical and synthetic biology studies, but could be viewed as inappropriate choices for phage therapy.This research was supported by the EU Marie-Curie Intra-European Fellowship for Career Development (FP7-
PEOPLE-2011-IEF) grant number 298003.This is the version of record of the article "Viunalikeviruses are environmentally common agents of horizontal gene transfer in pathogens and biocontrol bacteria" published in ISME Journal on August 2104 under the NPG Open Access option. The published version of record is available on the journal website at http://dx.doi.org/10.1038/ismej.2014.15
Recommended from our members
SimArray: a user-friendly and user-configurable microarray design tool.
BACKGROUND: Microarrays were first developed to assess gene expression but are now also used to map protein-binding sites and to assess allelic variation between individuals. Regardless of the intended application, efficient production and appropriate array design are key determinants of experimental success. Inefficient production can make larger-scale studies prohibitively expensive, whereas poor array design makes normalisation and data analysis problematic. RESULTS: We have developed a user-friendly tool, SimArray, which generates a randomised spot layout, computes a maximum meta-grid area, and estimates the print time, in response to user-specified design decisions. Selected parameters include: the number of probes to be printed; the microtitre plate format; the printing pin configuration, and the achievable spot density. SimArray is compatible with all current robotic spotters that employ 96-, 384- or 1536-well microtitre plates, and can be configured to reflect most production environments. Print time and maximum meta-grid area estimates facilitate evaluation of each array design for its suitability. Randomisation of the spot layout facilitates correction of systematic biases by normalisation. CONCLUSION: SimArray is intended to help both established researchers and those new to the microarray field to develop microarray designs with randomised spot layouts that are compatible with their specific production environment. SimArray is an open-source program and is available from http://www.flychip.org.uk/SimArray/.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Pseudomonas aeruginosa That Specifically Mediates Chemotaxis Toward α-Ketoglutarate
Pseudomonas aeruginosa is an ubiquitous pathogen able to infect humans, animals, and plants. Chemotaxis was found to be associated with the virulence of this and other pathogens. Although established as a model for chemotaxis research, the majority of the 26 P. aeruginosa chemoreceptors remain functionally un-annotated. We report here the identification of PA5072 (named McpK) as chemoreceptor for α-ketoglutarate (αKG). High-throughput thermal shift assays and isothermal titration calorimetry studies (ITC) of the recombinant McpK ligand binding domain (LBD) showed that it recognizes exclusively α-ketoglutarate. The ITC analysis indicated that the ligand bound with positive cooperativity (Kd1 = 301 μM, Kd2 = 81 μM). McpK is predicted to possess a helical bimodular (HBM) type of LBD and this and other studies suggest that this domain type may be associated with the recognition of organic acids. Analytical ultracentrifugation (AUC) studies revealed that McpK-LBD is present in monomer-dimer equilibrium. Alpha-KG binding stabilized the dimer and dimer self-dissociation constants of 55 μM and 5.9 μM were derived for ligand-free and αKG-bound forms of McpK-LBD, respectively. Ligand-induced LBD dimer stabilization has been observed for other HBM domain containing receptors and may correspond to a general mechanism of this protein family. Quantitative capillary chemotaxis assays demonstrated that P. aeruginosa showed chemotaxis to a broad range of αKG concentrations with maximal responses at 500 μM. Deletion of the mcpK gene reduced chemotaxis over the entire concentration range to close to background levels and wild type like chemotaxis was recovered following complementation. Real-time PCR studies indicated that the presence of αKG does not modulate mcpK expression. Since αKG is present in plant root exudates it was investigated whether the deletion of mcpK altered maize root colonization. However, no significant changes with respect to the wild type strain were observed. The existence of a chemoreceptor specific for αKG may be due to its central metabolic role as well as to its function as signaling molecule. This work expands the range of known chemoreceptor types and underlines the important physiological role of chemotaxis toward tricarboxylic acid cycle intermediates. [EN]FEDER funds and Fondo Social Europeo through grants from the Junta de Andalucía (grant CVI-7335) and the Spanish Ministry for Economy and Competitiveness (grant BIO2013-42297). MM was supported by the Spanish Ministry of Economy and Competitiveness Postdoctoral Research Program, Juan de la Cierva (JCI-2012-11815).Peer reviewe
A Plasmid-Transposon Hybrid Mutagenesis System Effective in a Broad Range of Enterobacteria.
Random transposon mutagenesis is a powerful technique used to generate libraries of genetic insertions in many different bacterial strains. Here we develop a system facilitating random transposon mutagenesis in a range of different Gram-negative bacterial strains, including Pectobacterium atrosepticum, Citrobacter rodentium, Serratia sp. ATCC39006, Serratia plymuthica, Dickeya dadantii, and many more. Transposon mutagenesis was optimized in each of these strains and three studies are presented to show the efficacy of this system. Firstly, the important agricultural pathogen D. dadantii was mutagenized. Two mutants that showed reduced protease production and one mutant producing the previously cryptic pigment, indigoidine, were identified and characterized. Secondly, the enterobacterium, Serratia sp. ATCC39006 was mutagenized and mutants incapable of producing gas vesicles, proteinaceous intracellular organelles, were identified. One of these contained a β-galactosidase transcriptional fusion within the gene gvpA1, essential for gas vesicle production. Finally, the system was used to mutate the biosynthetic gene clusters of the antifungal, anti-oomycete and anticancer polyketide, oocydin A, in the plant-associated enterobacterium, Dickeya solani MK10. The mutagenesis system was developed to allow easy identification of transposon insertion sites by sequencing, after facile generation of a replicon encompassing the transposon and adjacent DNA, post-excision. Furthermore, the system can also create transcriptional fusions with either β-galactosidase or β-glucuronidase as reporters, and exploits a variety of drug resistance markers so that multiple selectable fusions can be generated in a single strain. This system of various transposons has wide utility and can be combined in many different ways.The authors would like to acknowledge several funding sources. D. Smith was supported by a PhD studentship from the BBSRC. Work in the MW lab is supported by the BBSRC (grants BB/G015171/1 and BB/M019411/1). K. Roberts was funded by an MRC studentship. R. Monson and the Salmond lab were supported by grants from the BBSRC (Grant No Provisional BB/K001833/1). M.A. Matilla was supported by the EU Marie-Curie Intra-European Fellowship for Career Development (FP7-PEOPLE-2011-IEF), grant number 298003. B. Richardson was supported by a Harry Smith vacation studentship from the SGM, UK. The authors would also like to thank Ray Chai for careful reading and comments on this manuscript. Alison Drew provided technical support. Work with plant pathogens was carried out under DEFRA licence No. 50864/197900/1.This is the final version of the article. It was first available from Frontiers via http://dx.doi.org/10.3389/fmicb.2015.0144
An original constraint on the Hubble constant: h>0.74
The Hubble parameter H0 still not very well measured. Although the Hubble Key
Project, Chandra and WMAP gave good estimates, the uncertainties remain quite
large. In this brief report, we suggest an original and independent method to
derive a lower limit on H0 using the absorption of very high energy gamma-rays
by the cosmic infrared background. With conservative hypothesis, we obtain
H0>74 km/s/Mpc at the 68% confidence level, which favors the upper end of the
intervals allowed by dedicated experiments.Comment: 7 pages, 3 figures. Version accepted by MNRAS, minor changes, results
unchange
Mice lacking ataxin-1 display learning deficits and decreased hippocampal paired-pulse facilitation.
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative
disorder characterized by ataxia, progressive motor deterioration, and loss of cerebellar Purkinje cells. To investigate SCA1 pathogenesis and to gain insight into the function of the SCA1 gene product ataxin-1, a novel protein without homology to previously described proteins, we generated mice with a targeted deletion in the murine Sca1 gene. Mice lacking ataxin-1 are viable, fertile, and do not show any evidence of ataxia or neurodegeneration. However, Sca1 null mice demonstrate decreased exploratory behavior, pronounced deficits in the spatial version of the Morris water maze test, and impaired performance on the rotating rod apparatus. Furthermore, neurophysiological studies performed in area CA1 of the hippocampus reveal decreased paired-pulse facilitation in Sca1 null mice, whereas long-term and post-tetanic potentiations are normal.
These findings demonstrate that SCA1 is not caused by loss of function of ataxin-1 and point to the possible role of ataxin-1 in learning and memory
- …
