548 research outputs found

    Quasiparticles as composite objects in the RVB superconductor

    Full text link
    We study the nature of the superconducting state, the origin of d-wave pairing, and elementary excitations of a resonating valence bond (RVB) superconductor. We show that the phase string formulation of the t-J model leads to confinement of bare spinon and holon excitations in the superconducting state, though the vacuum is described by the RVB state. Nodal quasiparticles are obtained as composite excitations of spinon and holon excitations. The d-wave pairing symmetry is shown to arise from short range antiferromagnetic correlations

    Topological defects: A problem for cyclic universes?

    Full text link
    We study the behaviour of cosmic string networks in contracting universes, and discuss some of their possible consequences. We note that there is a fundamental time asymmetry between defect network evolution for an expanding universe and a contracting universe. A string network with negligible loop production and small-scale structure will asymptotically behave during the collapse phase as a radiation fluid. In realistic networks these two effects are important, making this solution only approximate. We derive new scaling solutions describing this effect, and test them against high-resolution numerical simulations. A string network in a contracting universe, together with the gravitational radiation background it has generated, can significantly affect the dynamics of the universe both locally and globally. The network can be an important source of radiation, entropy and inhomogeneity. We discuss the possible implications of these findings for bouncing and cyclic cosmological models.Comment: 11 RevTeX 4 pages, 6 figures; version to appear in Phys. Rev.

    Lagrangian evolution of global strings

    Full text link
    We establish a method to trace the Lagrangian evolution of extended objects consisting of a multicomponent scalar field in terms of a numerical calculation of field equations in three dimensional Eulerian meshes. We apply our method to the cosmological evolution of global strings and evaluate the energy density, peculiar velocity, Lorentz factor, formation rate of loops, and emission rate of Nambu-Goldstone (NG) bosons. We confirm the scaling behavior with a number of long strings per horizon volume smaller than the case of local strings by a factor of \sim 10. The strategy and the method established here are applicable to a variety of fields in physics.Comment: 5 pages, 2 figure

    Spin-orbital gapped phase with least symmetry breaking in the one-dimensional symmetrically coupled spin-orbital model

    Full text link
    To describe the spin-orbital energy gap formation in the one-dimensional symmetrically coupled spin-orbital model, we propose a simple mean field theory based on an SU(4) constraint fermion representation of spins and orbitals. A spin-orbital gapped phase is formed due to a marginally relevant spin-orbital valence bond pairing interaction. The energy gap of the spin and orbital excitations grows extremely slowly from the SU(4) symmetric point up to a maximum value and then decreases rapidly. By calculating the spin, orbital, and spin-orbital tensor static susceptibilities at zero temperature, we find a crossover from coherent to incoherent magnetic excitations as the spin-orbital coupling decreasing from large to small values.Comment: 10 pages, Revtex file, 5 figure

    Percolation on two- and three-dimensional lattices

    Full text link
    In this work we apply a highly efficient Monte Carlo algorithm recently proposed by Newman and Ziff to treat percolation problems. The site and bond percolation are studied on a number of lattices in two and three dimensions. Quite good results for the wrapping probabilities, correlation length critical exponent and critical concentration are obtained for the square, simple cubic, HCP and hexagonal lattices by using relatively small systems. We also confirm the universal aspect of the wrapping probabilities regarding site and bond dilution.Comment: 15 pages, 6 figures, 3 table

    Spin-charge separation in the single hole doped Mott antiferromagnet

    Full text link
    The motion of a single hole in a Mott antiferromagnet is investigated based on the t-J model. An exact expression of the energy spectrum is obtained, in which the irreparable phase string effect [Phys. Rev. Lett. 77, 5102 (1996)] is explicitly present. By identifying the phase string effect with spin backflow, we point out that spin-charge separation must exist in such a system: the doped hole has to decay into a neutral spinon and a spinless holon, together with the phase string. We show that while the spinon remains coherent, the holon motion is deterred by the phase string, resulting in its localization in space. We calculate the electron spectral function which explains the line shape of the spectral function as well as the ``quasiparticle'' spectrum observed in angle-resolved photoemission experiments. Other analytic and numerical approaches are discussed based on the present framework.Comment: 16 pages, 9 figures; references updated; to appear in Phys. Rev.

    Learning difficulties : a portuguese perspective of a universal issue

    Get PDF
    In this article we present findings of a study that was conducted with the purpose of deepening the knowledge about the field of learning difficulties in Portugal. Therefore, within these findings we will discuss across several cultural boundaries, themes related with the existence of learning difficulties as a construct, the terminology, the political, social and scientific influences on the field, and the models of identification and of ongoing school support for students. While addressing the above-mentioned themes we will draw attention to the different, yet converging, international understandings of learning difficulties

    Deviation From \Lambda CDM With Cosmic Strings Networks

    Full text link
    In this work, we consider a network of cosmic strings to explain possible deviation from \Lambda CDM behaviour. We use different observational data to constrain the model and show that a small but non zero contribution from the string network is allowed by the observational data which can result in a reasonable departure from \Lambda CDM evolution. But by calculating the Bayesian Evidence, we show that the present data still strongly favour the concordance \Lambda CDM model irrespective of the choice of the prior.Comment: 15 Pages, Latex Style, 4 eps figures, Revised Version, Accepted for publication in European Physical Journal

    BB flavour tagging using charm decays at the LHCb experiment

    Get PDF
    An algorithm is described for tagging the flavour content at production of neutral BB mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a BB meson with the charge of a reconstructed secondary charm hadron from the decay of the other bb hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+J/ψK+B^+ \to J/\psi \, K^+ and B0J/ψK0B^0 \to J/\psi \, K^{*0} using 3.0fb13.0\mathrm{\,fb}^{-1} of data collected by the LHCb experiment at pppp centre-of-mass energies of 7TeV7\mathrm{\,TeV} and 8TeV8\mathrm{\,TeV}. Its tagging power on these samples of BJ/ψXB \to J/\psi \, X decays is (0.30±0.01±0.01)%(0.30 \pm 0.01 \pm 0.01) \%.Comment: All figures and tables, along with any supplementary material and additional information, are available at http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm

    Evidence for the strangeness-changing weak decay ΞbΛb0π\Xi_b^-\to\Lambda_b^0\pi^-

    Get PDF
    Using a pppp collision data sample corresponding to an integrated luminosity of 3.0~fb1^{-1}, collected by the LHCb detector, we present the first search for the strangeness-changing weak decay ΞbΛb0π\Xi_b^-\to\Lambda_b^0\pi^-. No bb hadron decay of this type has been seen before. A signal for this decay, corresponding to a significance of 3.2 standard deviations, is reported. The relative rate is measured to be fΞbfΛb0B(ΞbΛb0π)=(5.7±1.80.9+0.8)×104{{f_{\Xi_b^-}}\over{f_{\Lambda_b^0}}}{\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) = (5.7\pm1.8^{+0.8}_{-0.9})\times10^{-4}, where fΞbf_{\Xi_b^-} and fΛb0f_{\Lambda_b^0} are the bΞbb\to\Xi_b^- and bΛb0b\to\Lambda_b^0 fragmentation fractions, and B(ΞbΛb0π){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) is the branching fraction. Assuming fΞb/fΛb0f_{\Xi_b^-}/f_{\Lambda_b^0} is bounded between 0.1 and 0.3, the branching fraction B(ΞbΛb0π){\cal{B}}(\Xi_b^-\to\Lambda_b^0\pi^-) would lie in the range from (0.57±0.21)%(0.57\pm0.21)\% to (0.19±0.07)%(0.19\pm0.07)\%.Comment: 7 pages, 2 figures, All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm
    corecore