1,097 research outputs found

    Stability of Fine Tuned Hierarchies in Strongly Coupled Chiral Models

    Get PDF
    A fine tuned hierarchy between a strongly coupled high energy compositeness scale and a much lower chiral symmetry breaking scale is a requisite ingredient in many models of dynamical electroweak symmetry breaking. Using a nonperturbative continuous Wilson renormalization group equation approach, we explore the stability of such a hierarchy against quantum fluctuations.Comment: 14,PURD-TH-94-1

    The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction across a tunneling junction out of equilibrium

    Full text link
    The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between two magnetic ss-dd spin impurities across a tunneling junction is studied when the system is driven out of equilibrium through biasing the junction. The nonequilibrium situation is handled with the Keldysh time-loop perturbation formalism in conjunction with appropriate coupling methods for tunneling systems due to Caroli and Feuchtwang. We find that the presence of a nonequilibrium bias across the junction leads to an interference of several fundamental oscillations, such that in this tunneling geometry, it is possible to tune the interaction between ferromagnetic and antiferromagnetic coupling at a fixed impurity configuration, simply by changing the bias across the junction. Furthermore, it is shown that the range of the RKKY interaction is altered out of equilibrium, such that in particular the interaction energy between two slabs of spins scales extensively with the thickness of the slabs in the presence of an applied bias.Comment: 38 pages revtex preprint; 5 postscript figures; submitted to Phys. Rev.

    Experimental Control and Characterization of Autophagy in Drosophila

    Get PDF
    Insects such as the fruit fly Drosophila melanogaster, which fundamentally reorganize their body plan during metamorphosis, make extensive use of autophagy for their normal development and physiology. In the fruit fly, the hepatic/adipose organ known as the fat body accumulates nutrient stores during the larval feeding stage. Upon entering metamorphosis, as well as in response to starvation, these nutrients are mobilized through a massive induction of autophagy, providing support to other tissues and organs during periods of nutrient deprivation. High levels of autophagy are also observed in larval tissues destined for elimination, such as the salivary glands and larval gut. Drosophila is emerging as an important system for studying the functions and regulation of autophagy in an in vivo setting. In this chapter we describe reagents and methods for monitoring autophagy in Drosophila, focusing on the larval fat body. We also describe methods for experimentally activating and inhibiting autophagy in this system and discuss the potential for genetic analysis in Drosophila to identify novel genes involved in autophagy

    On the structure and evolution of a polar crown prominence/filament system

    Full text link
    Polar crown prominences are made of chromospheric plasma partially circling the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D dynamics of a polar crown prominence using high cadence EUV images from the Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using time series across specific structures we compare flows across the disk in 195A with the prominence dynamics seen on the limb. The densest prominence material forms vertical columns which are separated by many tens of Mm and connected by dynamic bridges of plasma that are clearly visible in 304/171A two-color images. We also observe intermittent but repetitious flows with velocity 15 km/s in the prominence that appear to be associated with EUV bright points on the solar disk. The boundary between the prominence and the overlying cavity appears as a sharp edge. We discuss the structure of the coronal cavity seen both above and around the prominence. SDO/HMI and GONG magnetograms are used to infer the underlying magnetic topology. The evolution and structure of the prominence with respect to the magnetic field seems to agree with the filament linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar

    On a universal photonic tunnelling time

    Full text link
    We consider photonic tunnelling through evanescent regions and obtain general analytic expressions for the transit (phase) time τ\tau (in the opaque barrier limit) in order to study the recently proposed ``universality'' property according to which τ\tau is given by the reciprocal of the photon frequency. We consider different physical phenomena (corresponding to performed experiments) and show that such a property is only an approximation. In particular we find that the ``correction'' factor is a constant term for total internal reflection and quarter-wave photonic bandgap, while it is frequency-dependent in the case of undersized waveguide and distributed Bragg reflector. The comparison of our predictions with the experimental results shows quite a good agreement with observations and reveals the range of applicability of the approximated ``universality'' property.Comment: RevTeX, 8 pages, 4 figures, 1 table; subsection added with a new experiment analyzed, some other minor change

    Can slow roll inflation induce relevant helical magnetic fields?

    Full text link
    We study the generation of helical magnetic fields during single field inflation induced by an axial coupling of the electromagnetic field to the inflaton. During slow roll inflation, we find that such a coupling always leads to a blue spectrum with B2(k)kB^2(k) \propto k, as long as the theory is treated perturbatively. The magnetic energy density at the end of inflation is found to be typically too small to backreact on the background dynamics of the inflaton. We also show that a short deviation from slow roll does not result in strong modifications to the shape of the spectrum. We calculate the evolution of the correlation length and the field amplitude during the inverse cascade and viscous damping of the helical magnetic field in the radiation era after inflation. We conclude that except for low scale inflation with very strong coupling, the magnetic fields generated by such an axial coupling in single field slow roll inflation with perturbative coupling to the inflaton are too weak to provide the seeds for the observed fields in galaxies and clusters.Comment: 33 pages 6 figures; v4 to match the accepted version to appear in JCA

    Solar Intranetwork Magnetic Elements: bipolar flux appearance

    Full text link
    The current study aims to quantify characteristic features of bipolar flux appearance of solar intranetwork (IN) magnetic elements. To attack such a problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and an enhanced network areas. Cluster emergence of mixed polarities and IN ephemeral regions (ERs) are the most conspicuous forms of bipolar flux appearance within the network. Each of the clusters is characterized by a few well-developed ERs that are partially or fully co-aligned in magnetic axis orientation. On average, the sampled IN ERs have total maximum unsigned flux of several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes. The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx, separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN ERs exhibit a rotation of their magnetic axis of more than 10 degrees during flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by growth or the reverse, is not unusual. A few examples show repeated shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic photosphere. The observed bipolar behavior seems to carry rich information on magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure

    Is there a "Forest Filter Effect" for airborne organic pollutants?

    Get PDF
    ISSN:1436-3240ISSN:1436-325

    Probing the primordial power spectra with inflationary priors

    Full text link
    We investigate constraints on power spectra of the primordial curvature and tensor perturbations with priors based on single-field slow-roll inflation models. We stochastically draw the Hubble slow-roll parameters and generate the primordial power spectra using the inflationary flow equations. Using data from recent observations of CMB and several measurements of geometrical distances in the late Universe, Bayesian parameter estimation and model selection are performed for models that have separate priors on the slow-roll parameters. The same analysis is also performed adopting the standard parameterization of the primordial power spectra. We confirmed that the scale-invariant Harrison-Zel'dovich spectrum is disfavored with increased significance from previous studies. While current observations appear to be optimally modeled with some simple models of single-field slow-roll inflation, data is not enough constraining to distinguish these models.Comment: 23 pages, 3 figures, 7 tables, accepted for publication in JCA
    corecore