1,097 research outputs found
Stability of Fine Tuned Hierarchies in Strongly Coupled Chiral Models
A fine tuned hierarchy between a strongly coupled high energy compositeness
scale and a much lower chiral symmetry breaking scale is a requisite ingredient
in many models of dynamical electroweak symmetry breaking. Using a
nonperturbative continuous Wilson renormalization group equation approach, we
explore the stability of such a hierarchy against quantum fluctuations.Comment: 14,PURD-TH-94-1
The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction across a tunneling junction out of equilibrium
The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between two magnetic
- spin impurities across a tunneling junction is studied when the system
is driven out of equilibrium through biasing the junction. The nonequilibrium
situation is handled with the Keldysh time-loop perturbation formalism in
conjunction with appropriate coupling methods for tunneling systems due to
Caroli and Feuchtwang. We find that the presence of a nonequilibrium bias
across the junction leads to an interference of several fundamental
oscillations, such that in this tunneling geometry, it is possible to tune the
interaction between ferromagnetic and antiferromagnetic coupling at a fixed
impurity configuration, simply by changing the bias across the junction.
Furthermore, it is shown that the range of the RKKY interaction is altered out
of equilibrium, such that in particular the interaction energy between two
slabs of spins scales extensively with the thickness of the slabs in the
presence of an applied bias.Comment: 38 pages revtex preprint; 5 postscript figures; submitted to Phys.
Rev.
Experimental Control and Characterization of Autophagy in Drosophila
Insects such as the fruit fly Drosophila melanogaster, which fundamentally reorganize their body plan during metamorphosis, make extensive use of autophagy for their normal development and physiology. In the fruit fly, the hepatic/adipose organ known as the fat body accumulates nutrient stores during the larval feeding stage. Upon entering metamorphosis, as well as in response to starvation, these nutrients are mobilized through a massive induction of autophagy, providing support to other tissues and organs during periods of nutrient deprivation. High levels of autophagy are also observed in larval tissues destined for elimination, such as the salivary glands and larval gut. Drosophila is emerging as an important system for studying the functions and regulation of autophagy in an in vivo setting. In this chapter we describe reagents and methods for monitoring autophagy in Drosophila, focusing on the larval fat body. We also describe methods for experimentally activating and inhibiting autophagy in this system and discuss the potential for genetic analysis in Drosophila to identify novel genes involved in autophagy
On the structure and evolution of a polar crown prominence/filament system
Polar crown prominences are made of chromospheric plasma partially circling
the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D
dynamics of a polar crown prominence using high cadence EUV images from the
Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft
of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using
time series across specific structures we compare flows across the disk in 195A
with the prominence dynamics seen on the limb. The densest prominence material
forms vertical columns which are separated by many tens of Mm and connected by
dynamic bridges of plasma that are clearly visible in 304/171A two-color
images. We also observe intermittent but repetitious flows with velocity 15
km/s in the prominence that appear to be associated with EUV bright points on
the solar disk. The boundary between the prominence and the overlying cavity
appears as a sharp edge. We discuss the structure of the coronal cavity seen
both above and around the prominence. SDO/HMI and GONG magnetograms are used to
infer the underlying magnetic topology. The evolution and structure of the
prominence with respect to the magnetic field seems to agree with the filament
linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics
Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar
On a universal photonic tunnelling time
We consider photonic tunnelling through evanescent regions and obtain general
analytic expressions for the transit (phase) time (in the opaque barrier
limit) in order to study the recently proposed ``universality'' property
according to which is given by the reciprocal of the photon frequency.
We consider different physical phenomena (corresponding to performed
experiments) and show that such a property is only an approximation. In
particular we find that the ``correction'' factor is a constant term for total
internal reflection and quarter-wave photonic bandgap, while it is
frequency-dependent in the case of undersized waveguide and distributed Bragg
reflector. The comparison of our predictions with the experimental results
shows quite a good agreement with observations and reveals the range of
applicability of the approximated ``universality'' property.Comment: RevTeX, 8 pages, 4 figures, 1 table; subsection added with a new
experiment analyzed, some other minor change
Can slow roll inflation induce relevant helical magnetic fields?
We study the generation of helical magnetic fields during single field
inflation induced by an axial coupling of the electromagnetic field to the
inflaton. During slow roll inflation, we find that such a coupling always leads
to a blue spectrum with , as long as the theory is treated
perturbatively. The magnetic energy density at the end of inflation is found to
be typically too small to backreact on the background dynamics of the inflaton.
We also show that a short deviation from slow roll does not result in strong
modifications to the shape of the spectrum. We calculate the evolution of the
correlation length and the field amplitude during the inverse cascade and
viscous damping of the helical magnetic field in the radiation era after
inflation. We conclude that except for low scale inflation with very strong
coupling, the magnetic fields generated by such an axial coupling in single
field slow roll inflation with perturbative coupling to the inflaton are too
weak to provide the seeds for the observed fields in galaxies and clusters.Comment: 33 pages 6 figures; v4 to match the accepted version to appear in
JCA
Solar Intranetwork Magnetic Elements: bipolar flux appearance
The current study aims to quantify characteristic features of bipolar flux
appearance of solar intranetwork (IN) magnetic elements. To attack such a
problem, we use the Narrow-band Filter Imager (NFI) magnetograms from the Solar
Optical Telescope (SOT) on board \emph{Hinode}; these data are from quiet and
an enhanced network areas. Cluster emergence of mixed polarities and IN
ephemeral regions (ERs) are the most conspicuous forms of bipolar flux
appearance within the network. Each of the clusters is characterized by a few
well-developed ERs that are partially or fully co-aligned in magnetic axis
orientation. On average, the sampled IN ERs have total maximum unsigned flux of
several 10^{17} Mx, separation of 3-4 arcsec, and a lifetime of 10-15 minutes.
The smallest IN ERs have a maximum unsigned flux of several 10^{16} Mx,
separations less than 1 arcsec, and lifetimes as short as 5 minutes. Most IN
ERs exhibit a rotation of their magnetic axis of more than 10 degrees during
flux emergence. Peculiar flux appearance, e.g., bipole shrinkage followed by
growth or the reverse, is not unusual. A few examples show repeated
shrinkage-growth or growth-shrinkage, like magnetic floats in the dynamic
photosphere. The observed bipolar behavior seems to carry rich information on
magneto-convection in the sub-photospheric layer.Comment: 26 pages, 14 figure
Is there a "Forest Filter Effect" for airborne organic pollutants?
ISSN:1436-3240ISSN:1436-325
Probing the primordial power spectra with inflationary priors
We investigate constraints on power spectra of the primordial curvature and
tensor perturbations with priors based on single-field slow-roll inflation
models. We stochastically draw the Hubble slow-roll parameters and generate the
primordial power spectra using the inflationary flow equations. Using data from
recent observations of CMB and several measurements of geometrical distances in
the late Universe, Bayesian parameter estimation and model selection are
performed for models that have separate priors on the slow-roll parameters. The
same analysis is also performed adopting the standard parameterization of the
primordial power spectra. We confirmed that the scale-invariant
Harrison-Zel'dovich spectrum is disfavored with increased significance from
previous studies. While current observations appear to be optimally modeled
with some simple models of single-field slow-roll inflation, data is not enough
constraining to distinguish these models.Comment: 23 pages, 3 figures, 7 tables, accepted for publication in JCA
- …
