10,435 research outputs found

    Pool temperature stratification analysis in CIRCE-ICE facility with RELAP5-3D© model and comparison with experimental tests

    Get PDF
    In the frame of heavy liquid metal (HLM) technology development, CIRCE pool facility at ENEA/Brasimone Research Center was updated by installing ICE (Integral Circulation Experiments) test section which simulates the thermal behavior of a primary system in a HLM cooled pool reactor. The experimental campaign led to the characterization of mixed convection and thermal stratification in a HLM pool in safety relevant conditions and to the distribution of experimental data for the validation of CFD and system codes. For this purpose, several thermocouples were installed into the pool using 4 vertical supports in different circumferential position for a total of 119 thermocouples [1][2]. The aim of this work is to investigate the capability of the system code RELAP5-3D (c) to simulate mixed convection and thermal stratification phenomena in a HLM pool in steady state conditions by comparing code results with experimental data. The pool has been simulated by a 3D component divided into 1728 volumes, 119 of which are centered in the exact position of the thermocouples. Three dimensional model of the pool is completed with a mono-dimensional nodalization of the primary main flow path. The results obtained by code simulations are compared with a steady state condition carried out in the experimental campaign. Results of axial, radial and azimuthal temperature profile into the pool are in agreement with the available experimental data Furthermore the code is able to well simulate operating conditions into the main flow path of the test section

    The Mn site in Mn-doped Ga-As nanowires: an EXAFS study

    Full text link
    We present an EXAFS study of the Mn atomic environment in Mn-doped GaAs nanowires. Mn doping has been obtained either via the diffusion of the Mn used as seed for the nanowire growth or by providing Mn during the growth of Au-induced wires. As a general finding, we observe that Mn forms chemical bonds with As but is not incorporated in a substitutional site. In Mn-induced GaAs wires, Mn is mostly found bonded to As in a rather disordered environment and with a stretched bond length, reminiscent of that exhibited by MnAs phases. In Au-seeded nanowires, along with stretched Mn-As coordination we have found the presence of Mn in a Mn-Au intermetallic compound.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Semiconductor Science and Technology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The definitive publisher-authenticated version is available online at doi:10.1088/0268-1242/27/8/08500

    Excitonic Effects in Quantum Wires

    Get PDF
    We review the effects of Coulomb correlation on the linear and non-linear optical properties of semiconductor quantum wires, with emphasis on recent results for the bound excitonic states. Our theoretical approach is based on generalized semiconductor Bloch equations, and allows full three-dimensional multisubband description of electron-hole correlation for arbitrary confinement profiles. In particular, we consider V- and T-shaped structures for which significant experimental advances were obtained recently. Above band gap, a very general result obtained by this approach is that electron-hole Coulomb correlation removes the inverse-square-root single-particle singularity in the optical spectra at band edge, in agreement with previous reports from purely one-dimensional models. Strong correlation effects on transitions in the continuum are found to persist also at high densities of photoexcited carriers. Below bandgap, we find that the same potential- (Coulomb) to kinetic-energy ratio holds for quite different wire cross sections and compositions. As a consequence, we identify a shape- and barrier-independent parameter that governs a universal scaling law for exciton binding energy with size. Previous indications that the shape of the wire cross-section may have important effects on exciton binding are discussed in the light of the present results.Comment: Proc. OECS-5 Conference, G\"ottingen, 1997 (To appear in Phys. Stat. Sol. (b)

    A Comparative Study of RANS, URANS and NLES Approaches for Flow Prediction in Pin Fin Array

    Get PDF
    Gas Turbine are nowadays largely used for aircraft propulsion and land-based power generation. The increased attention to environmental aspects has promoted research and development efforts both from manufacturers and research centres. The latest developments in turbinecooling technologies play a critical role in the attempt to increase the efficiency and the specific power of the most advanced designs. Pin fin arrays, in particular, are widely used in jet engine application because of their ability to enhance cooling by providing extended surfaces for conduction and convection. They are also known to be an effective means to create turbulence which naturally increases heat transfer. Pin fin turbulators are typically located inside the trailing edge of high pressure turbine blade where they also act as a structural support. The optimum shapes and spacing of such elements are usually determined experimentally, or more recently, by using Computational Fluid Dynamics (CFD). On the other hand, the comprehension of the real physics controlling the heat transfer enhancement process and the role played by the large scale vortical structures generated by the inserts, still represent a great challenge for fluid mechanic researchers. The problem has been intensively investigated by Ames et al. (2005) by means of an experimental campaign on pin fin matrix. From the numerical point of view, the principal bottleneck of the CFD approach as applied to this kind of massively unsteady flow is related to the high computational cost and to the reliability of the turbulence models. The main objective of this work is to offer a critical analysis of the performance of a cooling device consisting of a pin fin turbulators geometry, as predicted by different CFD models of various complexity, using similar computational technology to integrate the corresponding governing equations. Local velocity and turbulence distributions are presented and compared with available experimental data

    A Comparative Study of RANS, URANS and NLES Approaches for Flow Prediction in Pin Fin Array

    Get PDF
    Gas Turbine are nowadays largely used for aircraft propulsion and land-based power generation. The increased attention to environmental aspects has promoted research and development efforts both from manufacturers and research centres. The latest developments in turbinecooling technologies play a critical role in the attempt to increase the efficiency and the specific power of the most advanced designs. Pin fin arrays, in particular, are widely used in jet engine application because of their ability to enhance cooling by providing extended surfaces for conduction and convection. They are also known to be an effective means to create turbulence which naturally increases heat transfer. Pin fin turbulators are typically located inside the trailing edge of high pressure turbine blade where they also act as a structural support. The optimum shapes and spacing of such elements are usually determined experimentally, or more recently, by using Computational Fluid Dynamics (CFD). On the other hand, the comprehension of the real physics controlling the heat transfer enhancement process and the role played by the large scale vortical structures generated by the inserts, still represent a great challenge for fluid mechanic researchers. The problem has been intensively investigated by Ames et al. (2005) by means of an experimental campaign on pin fin matrix. From the numerical point of view, the principal bottleneck of the CFD approach as applied to this kind of massively unsteady flow is related to the high computational cost and to the reliability of the turbulence models. The main objective of this work is to offer a critical analysis of the performance of a cooling device consisting of a pin fin turbulators geometry, as predicted by different CFD models of various complexity, using similar computational technology to integrate the corresponding governing equations. Local velocity and turbulence distributions are presented and compared with available experimental data

    Stochastic Variation of the Aero-Thermal Flow Field in a Cooled High-Pressure Transonic Vane Configuration

    Get PDF
    In transonic high-pressure turbine stages, oblique shocks originated from vane trailing edges impact the rear suction side of each adjacent vane. High-pressure vanes are usually cooled to tolerate the combustor exit temperature levels, which would reduce dramatically the residual life of a solid vane. Then, it is highly probable that shock impingement will occur in proximity of one of the coolant rows. It has already been observed that the presence of an adverse pressure gradient generates non-negligible effects on heat load due to the increase in boundary layer thickness and turbulence level, with a detrimental impact on the local adiabatic effectiveness values. Furthermore, the generation of a tornado-like vortex has been recently observed that could further decrease the efficacy of the cooling system by moving cold flow far from the vane wall. It must be also underlined that manufacturing deviations and in-service degradation are responsible for the stochastic variation of geometrical parameters. This latter phenomenon greatly alters the unsteady location of the shock impingement and the time-dependent thermal load on the vane. Present work starts from what is shown in literature and provides a highly-detailed description of the aero-thermal field that occurs on a model that represents the flow conditions occurring on the rear suction side of a cooled vane. The numerical model is initially validated against the experimental data obtained by the University of Karlsruhe during TATEF2 EU project, and then an uncertainty quantification methodology based on the probabilistic collocation method and on Padè's polynomials is used to consider the probability distribution of the geometrical parameters. The choice of aleatory unknowns allows to consider the mutual effects between shock-waves, trailing edge thickness and hole diameter. Turbulence is modelled by using the Reynolds Stress Model already implemented in ANSYS® Fluent®. Special attention is paid to the description of the flow field in the shock/boundary layer interaction region, where the presence of a secondary effects will completely change the local adiabatic effectiveness values

    MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells

    Get PDF
    A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA-induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA-binding protein Rbm24 is a major regulator of muscle-specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protei

    HEV in the pork food chain in United Kingdom

    Get PDF
    Hepatitis E virus (HEV) is responsible of acute viral hepatitis in people and it is endemic in developing countries where it is transmitted mainly through faecal contamination of drinking water. Some of the cases in developed countries are autochthonous

    Bio-Hydrocarbons through Catalytic Pyrolysis of Used Cooking Oils: towards sustainable jet and road fuels

    Get PDF
    Vegetable Oil (VO) is today the most used feedstock for transport biofuel production by transesterification to biodiesel. Other commercial technologies for renewable fuels production are mainly based either on Fischer-Tropsch (FT) synthesis from coal, natural gas and possibly biomass, or hydro treating of vegetable oil (Hydrotreated Vegetable Oil, HVO): this also includes Hydrotreated Renewable Jet fuel, HRJ, Used Cooking Oil (UCO) is a highly sustainable feedstock (based on EC-RED scheme): it is therefore considered as a possible alternative to VOs for greening of air transport and, under proper circumstances, for reducing the feedstock cost component. However, the use of UCO is not trivial in reactors, as catalysts are sensitive to impurities and contaminations, which are typical of waste oils. Moreover, the chemical composition of UCO is variable regionally as well as seasonally, because the type of base-vegetable oils vary with Country and period of the year. In the framework of the ITAKA EU FP7 project, (catalytic) thermochemical conversion of UCO has been considered to obtain an intermediate biofuel suitable for upgrading by hydrotreating. The catalytic conversion of UCO and Fatty Acids were investigated in a 1.5 kg/h pilot unit. UCO, properly filtered and conditioned, was characterized, and then converted in bio-oil by means of thermal and catalytic reactionsunder controlled conditions. The type of catalyst and the reaction conditions, including several parameters such as temperature, reactor geometry, heating rate and residence time, were evaluated, and selected combinations were tested. The bio-oil was characterized in terms of main constituents and hydrocarbons content, and GC-MS and GC-FID analyses were used to qualitatively and quantitatively assess the composition of the fuel
    corecore