37,703 research outputs found

    Neutrino-nucleus reactions and their role for supernova dynamics and nucleosynthesis

    Full text link
    The description of nuclear reactions induced by supernova neutrinos has witnessed significant progress during the recent years. At the energies and momentum transfers relevant for supernova neutrinos neutrino-nucleus cross sections are dominated by allowed transitions, however, often with non-negligible contributions from (first) forbidden transitions. For several nuclei allowed Gamow-Teller strength distributions could be derived from charge-exchange reactions and from inelastic electron scattering data. Importantly the diagonalization shell model has been proven to accurately describe these data and hence became the appropriate tool to calculate the allowed contributions to neutrino-nucleus cross sections for supernova neutrinos. Higher multipole contributions are usually calculated within the framework of the Quasiparticle Random Phase Approximation, which describes the total strength and the position of the giant resonances quite well. This manuscript reviews the recent progress achieved in calculating supernova-relevant neutrino-nucleus cross sections and discusses its verification by data. Moreover, the review summarizes also the impact which neutrino-nucleus reactions have on the dynamics of supernovae and on the associated nucleosynthesis. These include the absorption of neutrinos by nuclei (the inverse of nuclear electron capture which is the dominating weak-interaction process during collapse), inelastic neutrino-nucleus scattering and nuclear de-excitation by neutrino-pair emission. We also discuss the role of neutrino-induced reactions for the recently discovered νp\nu p process, for the r-process and for the neutrino process, for which neutrino-nucleus reactions have the largest impact. Finally, we briefly review neutrino-nucleus reactions important for the observation of supernova neutrinos by earthbound detectors. (Abridged)Comment: 77 pages, 29 figures, 4 tables, submitted to Progress in Particle and Nuclear Physic

    Cellular automaton supercolliders

    Get PDF
    Gliders in one-dimensional cellular automata are compact groups of non-quiescent and non-ether patterns (ether represents a periodic background) translating along automaton lattice. They are cellular-automaton analogous of localizations or quasi-local collective excitations travelling in a spatially extended non-linear medium. They can be considered as binary strings or symbols travelling along a one-dimensional ring, interacting with each other and changing their states, or symbolic values, as a result of interactions. We analyse what types of interaction occur between gliders travelling on a cellular automaton `cyclotron' and build a catalog of the most common reactions. We demonstrate that collisions between gliders emulate the basic types of interaction that occur between localizations in non-linear media: fusion, elastic collision, and soliton-like collision. Computational outcomes of a swarm of gliders circling on a one-dimensional torus are analysed via implementation of cyclic tag systems

    Prediction of jet engine parameters for control design using genetic programming

    Get PDF
    The simulation of a jet engine behavior is widely used in many different aspects of the engine development and maintenance. Achieving high quality jet engine control systems requires the iterative use of these simulations to virtually test the performance of the engine avoiding any possible damage on the real engine. Jet engine simulations involve the use of mathematical models which are complex and may not always be available. This paper introduces an approach based on Genetic Programming (GP) to model different parameters of a small engine for control design such as the Exhaust Gas Temperature (EGT). The GP approach has no knowledge of the characteristics of the engine. Instead, the model is found by the evolution of models based on past measurements of parameters such as the pump voltage. Once the model is obtained, it is used to predict the behaviour of the jet engine one step ahead. The proposed approach is successfully applied for the simulation of a Behotec j66 jet engine and the results are presented

    Supernova neutrinos and nucleosynthesis

    Full text link
    Observations of metal-poor stars indicate that at least two different nucleosynthesis sites contribute to the production of r-process elements. One site is responsible for the production of light r-process elements Z<~50 while the other produces the heavy r-process elements. We have analyzed recent observations of metal-poor stars selecting only stars that are enriched in light r-process elements and poor in heavy r-process elements. We find a strong correlation between the observed abundances of the N=50 elements (Sr, Y and Zr) and Fe. It suggest that neutrino-driven winds from core-collapse supernova are the main site for the production of these elements. We explore this possibility by performing nucleosynthesis calculations based on long term Boltzmann neutrino transport simulations. They are based on an Equation of State that reproduces recent constrains on the nuclear symmetry energy. We predict that the early ejecta is neutron-rich with Ye ~ 0.48, it becomes proton rich around 4 s and reaches Ye = 0.586 at 9 s when our simulation stops. The nucleosynthesis in this model produces elements between Zn and Mo, including 92Mo. The elemental abundances are consistent with the observations of the metal-poor star HD 12263. For the elements between Ge and Mo, we produce mainly the neutron-deficient isotopes. This prediction can be confirmed by observations of isotopic abundances in metal-poor stars. No elements heavier than Mo (Z=42) and no heavy r-process elements are produced in our calculations.Comment: 18 pages, 5 figures, submitted to J. Phys. G: Nucl. Part. Phys. (Focus issue "Nucleosynthesis and the role of neutrinos", ed. Baha Balantekin and Cristina Volpe

    Effects of heat release on triple flames

    Get PDF
    Heat release effects on laminar flame propagation in partially premixed flows are studied. Data for analysis are obtained from direct numerical simulations of a laminar mixing layer with a uniformly approaching velocity field. The structure that evolves under such conditions is a triple flame, which consists of two premixed wings and a trailing diffusion flame. Heat release increases the flame speed over that of the corresponding planar premixed flame. In agreement with previous analytical work, reductions in the mixture fraction gradient also increase the flame speed. The effects of heat release and mixture fraction gradients on flame speed are not independent, however; heat release modifies the effective mixture fraction gradient in front of the flame. For very small mixture fraction gradients, scaling laws that determine the flame speed in terms of the density change are presented. © 1995 American Institute of Physics

    Dalitz plot slope parameters for KπππK \to \pi\pi\pi decays and two particle interference

    Get PDF
    We study the possible distortion of phase-space in the decays KπππK \to \pi \pi \pi, which may result from final state interference among the decay products. Such distortion may influence the values of slope parameters extracted from the Dalitz plot distribution of these decays. We comment on the consequences on the magnitude of violation of the ΔI=1/2\mid \Delta I \mid = 1/2 rule in these decays.Comment: 17 pages, LaTex2e, 6 figures, v2 authors' affiliation modified, to appear in Mod. Phys. Lett.
    corecore