The description of nuclear reactions induced by supernova neutrinos has
witnessed significant progress during the recent years. At the energies and
momentum transfers relevant for supernova neutrinos neutrino-nucleus cross
sections are dominated by allowed transitions, however, often with
non-negligible contributions from (first) forbidden transitions. For several
nuclei allowed Gamow-Teller strength distributions could be derived from
charge-exchange reactions and from inelastic electron scattering data.
Importantly the diagonalization shell model has been proven to accurately
describe these data and hence became the appropriate tool to calculate the
allowed contributions to neutrino-nucleus cross sections for supernova
neutrinos. Higher multipole contributions are usually calculated within the
framework of the Quasiparticle Random Phase Approximation, which describes the
total strength and the position of the giant resonances quite well.
This manuscript reviews the recent progress achieved in calculating
supernova-relevant neutrino-nucleus cross sections and discusses its
verification by data. Moreover, the review summarizes also the impact which
neutrino-nucleus reactions have on the dynamics of supernovae and on the
associated nucleosynthesis. These include the absorption of neutrinos by nuclei
(the inverse of nuclear electron capture which is the dominating
weak-interaction process during collapse), inelastic neutrino-nucleus
scattering and nuclear de-excitation by neutrino-pair emission. We also discuss
the role of neutrino-induced reactions for the recently discovered νp
process, for the r-process and for the neutrino process, for which
neutrino-nucleus reactions have the largest impact. Finally, we briefly review
neutrino-nucleus reactions important for the observation of supernova neutrinos
by earthbound detectors. (Abridged)Comment: 77 pages, 29 figures, 4 tables, submitted to Progress in Particle and
Nuclear Physic