42 research outputs found

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Nematic opto-mechanical actuators for the fabrication of refreshable tactile systems

    No full text
    Nematic elastomers are promising materials for the fabrication of actuators due to their ability to reversibly contract and expand during phase transitions triggered by external stimuli. We present a refreshable tactile system based on the opto-mechanical properties of liquid-crystalline elastomers (LCE) composites, with the capability to represent Braille characters and graphic information. The actuators designed are based on the stress gradient generated in the elastomer under illumination to exert a force on movable components. Hardware implementation and communication software interface were developed too to provide end users with a complete solution. First tests prove not only the viability of the device, but also the potential applications of this type of actuators.Scopu

    Galaxy Clusters Discovered via the Thermal Sunyaev-Zel'dovich Effect in the 500-square-degree SPTpol Survey

    No full text
    International audienceWe present a catalog of 689 galaxy cluster candidates detected at significance ξ>4\xi>4 via their thermal Sunyaev-Zel'dovich (SZ) effect signature in 95 and 150 GHz data from the 500-square-degree SPTpol survey. We use optical and infrared data from the Dark Energy Camera and the Wide-field Infrared Survey Explorer (WISE) and \spitzer satellites, to confirm 544 of these candidates as clusters with 94%\sim94\% purity. The sample has an approximately redshift-independent mass threshold at redshift z>0.25z>0.25 and spans 1.5×101411.5 \times 10^{14} 1. We use external radio data from the Sydney University Molonglo Sky Survey (SUMSS) to estimate contamination to the SZ signal from synchrotron sources. The contamination reduces the recovered ξ\xi by a median value of 0.032, or 0.8%\sim0.8\% of the ξ=4\xi=4 threshold value, and 7%\sim7\% of candidates have a predicted contamination greater than Δξ=1\Delta \xi = 1. With the exception of a small number of systems (<1%)(<1\%), an analysis of clusters detected in single-frequency 95 and 150 GHz data shows no significant contamination of the SZ signal by emission from dusty or synchrotron sources. This cluster sample will be a key component in upcoming astrophysical and cosmological analyses of clusters. The SPTpol millimeter-wave maps and associated data products used to produce this sample are available at https://pole.uchicago.edu/public/Data/Releases.html, and the NASA LAMBDA website. An interactive sky server with the SPTpol maps and Dark Energy Survey data release 2 images is also available at NCSA https://skyviewer.ncsa.illinois.edu

    Galaxy Clusters Discovered via the Thermal Sunyaev-Zel'dovich Effect in the 500-square-degree SPTpol Survey

    No full text
    International audienceWe present a catalog of 689 galaxy cluster candidates detected at significance ξ>4\xi>4 via their thermal Sunyaev-Zel'dovich (SZ) effect signature in 95 and 150 GHz data from the 500-square-degree SPTpol survey. We use optical and infrared data from the Dark Energy Camera and the Wide-field Infrared Survey Explorer (WISE) and \spitzer satellites, to confirm 544 of these candidates as clusters with 94%\sim94\% purity. The sample has an approximately redshift-independent mass threshold at redshift z>0.25z>0.25 and spans 1.5×101411.5 \times 10^{14} 1. We use external radio data from the Sydney University Molonglo Sky Survey (SUMSS) to estimate contamination to the SZ signal from synchrotron sources. The contamination reduces the recovered ξ\xi by a median value of 0.032, or 0.8%\sim0.8\% of the ξ=4\xi=4 threshold value, and 7%\sim7\% of candidates have a predicted contamination greater than Δξ=1\Delta \xi = 1. With the exception of a small number of systems (<1%)(<1\%), an analysis of clusters detected in single-frequency 95 and 150 GHz data shows no significant contamination of the SZ signal by emission from dusty or synchrotron sources. This cluster sample will be a key component in upcoming astrophysical and cosmological analyses of clusters. The SPTpol millimeter-wave maps and associated data products used to produce this sample are available at https://pole.uchicago.edu/public/Data/Releases.html, and the NASA LAMBDA website. An interactive sky server with the SPTpol maps and Dark Energy Survey data release 2 images is also available at NCSA https://skyviewer.ncsa.illinois.edu

    Galaxy Clusters Discovered via the Thermal Sunyaev-Zel'dovich Effect in the 500-square-degree SPTpol Survey

    No full text
    International audienceWe present a catalog of 689 galaxy cluster candidates detected at significance ξ>4\xi>4 via their thermal Sunyaev-Zel'dovich (SZ) effect signature in 95 and 150 GHz data from the 500-square-degree SPTpol survey. We use optical and infrared data from the Dark Energy Camera and the Wide-field Infrared Survey Explorer (WISE) and \spitzer satellites, to confirm 544 of these candidates as clusters with 94%\sim94\% purity. The sample has an approximately redshift-independent mass threshold at redshift z>0.25z>0.25 and spans 1.5×101411.5 \times 10^{14} 1. We use external radio data from the Sydney University Molonglo Sky Survey (SUMSS) to estimate contamination to the SZ signal from synchrotron sources. The contamination reduces the recovered ξ\xi by a median value of 0.032, or 0.8%\sim0.8\% of the ξ=4\xi=4 threshold value, and 7%\sim7\% of candidates have a predicted contamination greater than Δξ=1\Delta \xi = 1. With the exception of a small number of systems (<1%)(<1\%), an analysis of clusters detected in single-frequency 95 and 150 GHz data shows no significant contamination of the SZ signal by emission from dusty or synchrotron sources. This cluster sample will be a key component in upcoming astrophysical and cosmological analyses of clusters. The SPTpol millimeter-wave maps and associated data products used to produce this sample are available at https://pole.uchicago.edu/public/Data/Releases.html, and the NASA LAMBDA website. An interactive sky server with the SPTpol maps and Dark Energy Survey data release 2 images is also available at NCSA https://skyviewer.ncsa.illinois.edu

    Septische Kardimyopathie

    No full text

    Sawtooth pacing with on-axis ICRH modulation in JET-ILW

    No full text
    A novel technique for sawteeth control in tokamak plasmas using ion-cyclotron resonance heating (ICRH) has been developed in the JET-ILW tokamak. Unlike previous ICRH methods, that explored the destabilization of the internal kink mode when the radio-frequency (RF) wave absorption was placed near the q = 1 surface, the technique presented here consists of stabilizing the sawteeth as fast as possible by applying the ICRH power centrally and subsequently induce a sawtooth crash by switching it off at the appropriate instant. The validation of this method in JET-ILW L-mode discharges, including preliminary tests in H-mode plasmas, is presented
    corecore