251 research outputs found

    Optical, X-ray, and γ-ray observations of the candidate transitional millisecond pulsar 4FGL J0427.8-6704

    Get PDF
    We present an optical, X-ray, and γ-ray study of 1SXPS J042749.2-670434, an eclipsing X-ray binary that has an associated γ-ray counterpart, 4FGL J0427.8-6704. This association has led to the source being classified as a transitional millisecond pulsar (tMSP) in an accreting state. We analyse 10.5 yr of Fermi LAT data and detect a γ-ray eclipse at the same phase as optical and X-ray eclipses at the >5 σ level, a significant improvement on the 2.8 σ level of the previous detection. The confirmation of this eclipse solidifies the association between the X-ray source and the γ-ray source, strengthening the tMSP classification. However, analysis of several optical data sets and an X-ray observation do not reveal a change in the source’s median brightness over long time-scales or a bi-modality on short time-scales. Instead, the light curve is dominated by flickering, which has a correlation time of 2.6 min alongside a potential quasi-periodic oscillation at ∼21 min. The mass of the primary and secondary stars is constrained to be M1=1.43+0.33−0.19 M⊙ and M2=0.3+0.17−0.12 M⊙ through modelling of the optical light curve. While this is still consistent with a white dwarf primary, we favour the tMSP in a low accretion state classification due to the significance of the γ-ray eclipse detection

    Fast quasi-periodic oscillations in the eclipsing polar VV Puppis from VLT and XMM-Newton observations

    Get PDF
    International audienceWe present high time resolution optical photometric data of the polar VV Puppis obtained simultaneously in three filters (u′, HeII λ4686, r′) with the ULTRACAM camera mounted at the ESO-VLT telescope. An analysis of a long 50 ks XMM-Newton observation of the source, retrieved from the database, is also provided. Quasi-periodic oscillations (QPOs) are clearly detected in the optical during the source bright phase intervals when the accreting pole is visible, confirming the association of the QPOs with the basis of the accretion column. QPOs are detected in the three filters at a mean frequency of ∼0.7 Hz with a similar amplitude ∼1%. Mean orbitally-averaged power spectra during the bright phase show a rather broad excess with a quality factor Q = ν/Δν = 5−7 but smaller data segments commonly show a much higher coherency with Q up to 30. The X-ray Multi-mirror Mission XMM (0.5–10 keV) observation provides the first accurate estimation of the hard X-ray component with a high kT ∼ 40 keV temperature and confirms the high extreme ultraviolet (EUV)-soft/hard ratio in the range of 4−15 for VV Pup. The detailed X-ray orbital light curve displays a short Δϕ ≃ 0.05 ingress into self-eclipse of the active pole, indicative of an accretion shock height of ∼75 km. No significant X-ray QPOs are detected with an amplitude upper limit of ∼30% in the range 0.1–5 Hz. Detailed hydrodynamical numerical simulations of the post-shock accretion region with parameters consistent with VV Pup demonstrate that the expected frequencies from radiative instability are identical for X-rays and optical regime at values ν ∼ 40–70 Hz, more than one order magnitude higher than observed. This confirms previous statements suggesting that present instability models are unable to explain the full QPO characteristics within the parameters commonly known for polars

    Magnetic white dwarfs in post-common-envelope binaries

    Get PDF
    Magnitude-limited samples have shown that 20-25 per cent of cataclysmic variables contain white dwarfs with magnetic fields of Mega Gauss strength, in stark contrast to the approximately 5 per cent of single white dwarfs with similar magnetic field strengths. Moreover, the lack of identifiable progenitor systems for magnetic cataclysmic variables leads to considerable challenges when trying to understand how these systems form and evolve. Here we present a sample of six magnetic white dwarfs in detached binaries with low-mass stellar companions where we have constrained the stellar and binary parameters including, for the first time, reliable mass estimates for these magnetic white dwarfs. We find that they are systematically more massive than non-magnetic white dwarfs in detached binaries. These magnetic white dwarfs generally have cooling ages of more than 1 Gyr and reside in systems that are very close to Roche-lobe filling. Our findings are more consistent with these systems being temporarily detached cataclysmic variables, rather than pre-cataclysmic binaries, but we cannot rule out the latter possibility. We find that these systems can display unusual asymmetric light curves that may offer a way to identify them in larger numbers in future. Seven new candidate magnetic white dwarf systems are also presented, three of which have asymmetric light curves. Finally, we note that several newly identified magnetic systems have archival spectra where there is no clear evidence of magnetism, meaning that these binaries have been previously missed. Nevertheless, there remains a clear lack of younger detached magnetic white dwarf systems

    A 15.7-minAM CVn binary discovered in K2

    Get PDF
    We present the discovery of SDSS J135154.46−064309.0, a short-period variable observed using 30-mincadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of 15.65 ± 0.12 min makes this system the fourth-shortest-period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at 15.7306 ± 0.0003 min, 16.1121 ± 0.0004 min, and 664.82 ± 0.06 min, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio q = M2/M1= 0.111 ± 0.005, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by Laser Interferometer Space Antenna, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components

    Accretion and ejection in black-hole X-ray transients

    Get PDF
    Aims: We summarize the current observational picture of the outbursts of black-hole X-ray transients (BHTs), based on the evolution traced in a hardness-luminosity diagram (HLD), and we offer a physical interpretation. Methods: The basic ingredient in our interpretation is the Poynting-Robertson Cosmic Battery (PRCB, Contopoulos & Kazanas 1998), which provides locally the poloidal magnetic field needed for the ejection of the jet. In addition, we make two assumptions, easily justifiable. The first is that the mass-accretion rate to the black hole in a BHT outburst has a generic bell-shaped form. This is guaranteed by the observational fact that all BHTs start their outburst and end it at the quiescent state. The second assumption is that at low accretion rates the accretion flow is geometrically thick, ADAF-like, while at high accretion rates it is geometrically thin. Results: Both, at the beginning and the end of an outburst, the PRCB establishes a strong poloidal magnetic field in the ADAF-like part of the accretion flow, and this explains naturally why a jet is always present in the right part of the HLD. In the left part of the HLD, the accretion flow is in the form of a thin disk, and such a disk cannot sustain a strong poloidal magnetic filed. Thus, no jet is expected in this part of the HLD. The counterclockwise traversal of the HLD is explained as follows: the poloidal magnetic field in the ADAF forces the flow to remain ADAF and the source to move upwards in the HLD rather than to turn left. Thus, the history of the system determines the counterclockwise traversal of the HLD. As a result, no BHT is expected to ever traverse the entire HLD curve in the clockwise direction. Conclusions: We offer a physical interpretation of accretion and ejection in BHTs with only one parameter, the mass transfer rate.Comment: Accepted for publication in A&

    A rapid optical and X-ray timing study of the neutron star X-ray binary Swift J1858.6–0814

    Get PDF
    We present a rapid timing analysis of optical (HiPERCAM and ULTRACAM) and X-ray (NICER) observations of the X-ray transient Swift J1858.6−0814 during 2018 and 2019. The optical light curves show relatively slow, large amplitude (∼1 mag in gs) ‘blue’ flares (i.e. stronger at shorter wavelengths) on time-scales of ∼minutes as well as fast, small amplitude (∼0.1 mag in gs) ‘red’ flares (i.e. stronger at longer wavelengths) on time-scales of ∼seconds. The ‘blue’ and ‘red’ flares are consistent with X-ray reprocessing and optically thin synchrotron emission, respectively, similar to what is observed in other X-ray binaries. The simultaneous optical versus soft- and hard-band X-ray light curves show time- and energy-dependent correlations. The 2019 March 4 and parts of the June data show a nearly symmetric positive cross-correlations (CCFs) at positive lags consistent with simple X-ray disc reprocessing. The soft- and hard-band CCFs are similar and can be reproduced if disc reprocessing dominates in the optical and one component (disc or synchrotron Comptonization) dominates both the soft and hard X-rays. A part of the 2019 June data shows a very different CCFs. The observed positive correlation at negative lag in the soft band can be reproduced if the optical synchrotron emission is correlated with the hot flow X-ray emission. The observed timing properties are in qualitative agreement with the hybrid inner hot accretion flow model, where the relative role of the different X-ray and optical components that vary during the course of the outburst, as well as on shorter time-scales, govern the shape of the optical/X-ray CCFs

    Measuring the mass of the black widow PSR J1555-2908

    Get PDF
    Accurate measurements of the masses of neutron stars are necessary to test binary evolution models, and to constrain the neutron star equation of state. In pulsar binaries with no measurable post-Keplerian parameters, this requires an accurate estimate of the binary system's inclination and the radial velocity of the companion star by other means than pulsar timing. In this paper, we present the results of a new method for measuring this radial velocity using the binary synthesis code Icarus. This method relies on constructing a model spectrum of a tidally distorted, irradiated star as viewed for a given binary configuration. This method is applied to optical spectra of the newly discovered black widow PSR J1555-2908. By modelling the optical spectroscopy alongside optical photometry, we find that the radial velocity of the companion star is 397±4397\pm4 km s−1^{-1} (errors quoted at 95\% confidence interval), as well as a binary inclination of >75o>75^{\rm o}. Combined with γ\gamma-ray pulsation timing information, this gives a neutron star mass of 1.67−0.09+0.15^{+0.15}_{-0.09} M⊙_\odot and a companion mass of 0.060−0.003+0.005^{+0.005}_{-0.003} M⊙_\odot, placing PSR J1555-2908 at the observed upper limit of what is considered a black widow system.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical Society. 15 pages, 7 Figures. Underlying data available at https://zenodo.org/record/565306

    System parameters of three short-period cataclysmic variable stars

    Get PDF
    Using photometric ULTRACAM observations of three new short period cataclysmic variables, we model the primary eclipse lightcurves to extract the orbital separation, masses, and radii of their component stars. We find donor masses of 0.060 +/- 0.008 solar masses, 0.042 +/- 0.001 solar masses, and 0.042 +/- 0.004 solar masses, two being very low-mass sub-stellar donors, and one within 2 sigma of the hydrogen burning limit. All three of the new systems lie close to the modified, "optimal" model evolutionary sequence of Knigge et al. (2011). We briefly re-evaluate the long-standing discrepancy between observed donor mass and radius data, and theoretical CV evolutionary tracks. By looking at the difference in the observed period at each mass and the period predicted by the Knigge et al. (2011) evolutionary sequence, we qualitatively examine the form of excess angular momentum loss that is missing from the models below the period gap. We show indications that the excess angular momentum loss missing from CV models grows in importance relative to gravitational losses as the period decreases. Detailed CV evolutionary models are necessary to draw more quantitative conclusions in the future

    Characterising eclipsing white dwarf M dwarf binaries from multi-band eclipse photometry

    Get PDF
    With the prevalence of wide-field, time-domain photometric sky surveys, the number of eclipsing white dwarf systems being discovered is increasing dramatically. An efficient method to follow these up will be key to determining any population trends and finding any particularly interesting examples. We demonstrate that multi-band eclipse photometry of binaries containing a white dwarf and an M dwarf can be used to determine the masses and temperatures of the white dwarfs to better than 5 per cent. For the M dwarfs we measure their parameters to a precision of better than 6 per cent with the uncertainty dominated by the intrinsic scatter of the M dwarf mass-radius relationship. This precision is better than what can typically be achieved with low-resolution spectroscopy. The nature of this method means that it will be applicable to LSST data in the future, enabling direct characterisation without follow-up spectroscopy. Additionally, we characterise three new post-common-envelope binaries from their eclipse photometry, finding two systems containing hot helium-core white dwarfs with low-mass companions (one near the brown dwarf transition regime) and a possible detached cataclysmic variable at the lower edge of the period gap

    Spectroscopic and photometric periods of six ultracompact accreting binaries

    Get PDF
    Ultracompact accreting binary systems each consist of a stellar remnant accreting helium-enriched material from a compact donor star. Such binaries include two related sub-classes, AM CVn-type binaries and helium cataclysmic variables, in both of which the central star is a white dwarf. We present a spectroscopic and photometric study of six accreting binaries with orbital periods in the range of 40--70 min, including phase-resolved VLT spectroscopy and high-speed ULTRACAM photometry. Four of these are AM CVn systems and two are helium cataclysmic variables. For four of these binaries we are able to identify orbital periods (of which three are spectroscopic). SDSS J1505+0659 has an orbital period of 67.8 min, significantly longer than previously believed, and longer than any other known AM CVn binary. We identify a WISE infrared excess in SDSS J1505+0659 that we believe to be the first direct detection of an AM CVn donor star in a non-direct impacting binary. The mass ratio of SDSS J1505+0659 is consistent with a white dwarf donor. CRTS J1028-0819 has an orbital period of 52.1 min, the shortest period of any helium cataclysmic variable. MOA 2010-BLG-087 is co-aligned with a K-class star that dominates its spectrum. ASASSN-14ei and ASASSN-14mv both show a remarkable number of echo outbursts following superoutbursts (13 and 10 echo outbursts respectively). ASASSN-14ei shows an increased outburst rate over the years following its superoutburst, perhaps resulting from an increased accretion rate
    • …
    corecore