106 research outputs found

    Thermal & Fluids Analysis and the NASA Launch Services Program

    Get PDF
    This presentation provides the What, Where, Why, and How of the thermal and fluids analysis disciplines within the Launch Services Program (LSP). The LSP manages all commercial launch services to match NASA science mission payloads to the appropriate launch system. The Flight Analysis Division within the LSP provides multi disciplinary analysis support of these flight systems to characterize payload and launch vehicle environments from payload mate to upper stage through on orbit separation. The Thermal Analysis and Fluids Analysis teams are two distinct groups within the Flight Analysis Division of the LSP who cover a wide array of standard and non standard analytical tasks. These teams offer a significant benefit to both the payload design and integration team and the launch vehicle supplier. These benefits, along with the tools and methods are described in this talk to inform engineers and analysts from both sides of the launch system interface how the LSP Thermal and Fluids Analysis teams can benefit the success of their mission

    Bone morphogenetic proteins − 7 and − 2 in the treatment of delayed osseous union secondary to bacterial osteitis in a rat model

    Get PDF
    Background: Bone infections due to trauma and subsequent delayed or impaired fracture healing represent a great challenge in orthopedics and trauma surgery. The prevalence of such bacterial infection-related types of delayed non-union is high in complex fractures, particularly in open fractures with additional extensive soft-tissue damage. The aim of this study was to establish a rat model of delayed osseous union secondary to bacterial osteitis and investigate the impact of rhBMP-7 and rhBMP-2 on fracture healing in the situation of an ongoing infection. Methods: After randomization to four groups 72 Sprague-Dawley rats underwent a transverse fracture of the midshaft tibia stabilized by intramedullary titanium K-wires. Three groups received an intramedullary inoculation with Staphylococcus aureus (103 colony-forming units) before stabilization and the group without bacteria inoculation served as healing control. After 5 weeks, a second surgery was performed with irrigation of the medullary canal and local rhBMP-7 and rhBMP-2 treatment whereas control group and infected control group received sterile saline. After further 5 weeks rats were sacrificed and underwent biomechanical testing to assess the mechanical stability of the fractured bone. Additional micro-CT analysis, histological, and histomorphometric analysis were done to evaluate bone consolidation or delayed union, respectively, and to quantify callus formation and the mineralized area of the callus. Results: Biomechanical testing showed a significantly higher fracture torque in the non-infected control group and the infected rhBMP-7- and rhBMP-2 group compared with the infected control group (p < 0.001). RhBMP-7 and rhBMP-2 groups did not show statistically significant differences (p = 0.57). Histological findings supported improved bone-healing after rhBMP treatment but quantitative micro-CT and histomorphometric results still showed significantly more hypertrophic callus tissue in all three infected groups compared to the non-infected group. Results from a semiquantitative bone-healing-score revealed best bone-healing in the non-infected control group. The expected chronic infection was confirmed in all infected groups. Conclusions: In delayed bone healing secondary to infection rhBMP treatment promotes bone healing with no significant differences in the healing efficacy of rhBMP-2 and rhBMP-7 being noted. Further new therapeutic bone substitutes should be analyzed with the present rat model for delayed osseous union secondary to bacterial osteitis

    Fibroblast growth factor 23 is associated with proteinuria and smoking in chronic kidney disease: An analysis of the MASTERPLAN cohort

    Get PDF
    Contains fulltext : 107913.pdf (postprint version ) (Open Access)BACKGROUND: Fibroblast growth factor 23 (FGF23) has emerged as a risk factor for cardiovascular disease and mortality throughout all stages of chronic kidney disease (CKD), independent from established risk factors and markers of mineral homeostasis. The relation of FGF23 with other renal and non-renal cardiovascular risk factors is not well established. METHODS: Using stored samples, plasma FGF23 was determined in 604 patients with moderate to severe kidney disease that participated in the MASTERPLAN study (ISRCTN73187232). The association of FGF23 with demographic and clinical parameters was evaluated using multivariable regression models. RESULTS: Mean age in the study population was 60 years and eGFR was 37 (+/- 14) ml/min/1.73 m(2). Median proteinuria was 0.3 g/24 hours [IQR 0.1-0.9]. FGF23 level was 116 RU/ml [67-203] median and IQR. Using multivariable analysis the natural logarithm of FGF23 was positively associated with history of cardiovascular disease (B = 0.224 RU/ml; p = 0.002), presence of diabetes (B = 0.159 RU/ml; p = 0.035), smoking (B = 0.313 RU/ml; p < 0.001), phosphate level (B = 0.297 per mmol/l; p = 0.0024), lnPTH (B = 0.244 per pmol/l; p < 0.001) and proteinuria (B = 0.064 per gram/24 hrs; p = 0.002) and negatively associated with eGFR (B = -0.022 per ml/min/1.73 m(2); p < 0.001). CONCLUSIONS: Our study demonstrates that in patients with CKD, FGF23 is related to proteinuria and smoking. We confirm the relation between FGF23 and other cardiovascular risk factors

    5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation

    Get PDF
    The therapeutic value of adipose-derived mesenchymal stem cells (Ad-MSCs) for bone regeneration is critically discussed. A possible reason for reduced osteogenic potential may be an age-related deterioration of the Ad-MSCs. In long term in vitro culture, epigenomic changes in DNA methylation are known to cause gene silencing, affecting stem cell growth as well as the differentiation potential. In this study, we observed an age-related decline in proliferation of primary human Ad-MSCs. Decreased Nanog, Oct4 and Lin28A and increased Sox2 gene-expression was accompanied by an impaired osteogenic differentiation potential of Ad-MSCs isolated from old donors (>60 a) as compared to Ad-MSCs isolated from younger donors (<45 a). 5-hydroxymethylcytosine (5 hmC) and 5-methylcytonsine (5 mC) distribution as well as TET gene expression were evaluated to assess the evidence of active DNA demethylation. We observed a decrease of 5 hmC in Ad-MSCs from older donors. Incubation of these cells with 5-Azacytidine induced proliferation and improved the osteogenic differentiation potential in these cells. The increase in AP activity and matrix mineralization was associated with an increased presence of 5 hmC as well as with an increased TET2 and TET3 gene expression. Our data show, for the first time, a decrease of DNA hydroxymethylation in Ad-MSCs which correlates with donor-age and that treatment with 5-Azacytidine provides an approach which could be used to rejuvenate Ad-MSCs from aged donors
    • 

    corecore