383 research outputs found

    Comparison of ibuprofen release from minitablets and capsules containing ibuprofen: β-Cyclodextrin complex

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in European Journal of Pharmaceutics and Biopharmaceutics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Eur J Pharm Biopharm. 2011 May;78(1):58-66. Epub 2010 Dec 30.Mixtures containing ibuprofen (IB) complexed with b-cyclodextrin (bCD) obtained by two complexation methods [suspension/solution (with water removed by air stream, spray- and freeze-drying) and kneading technique] were processed into pharmaceutical dosage forms (minitablets and capsules). Powders (IB, bCD and IBbCD) were characterized for moisture content, densities (true and bulk), angle of repose and Carr’s index, X-ray and NMR. From physical mixtures and IBbCD complexes without other excipients were prepared 2.5-mm-diameter minitablets and capsules. Minitablets were characterized for the energy of compaction, tensile strength, friability, density and IB release (at pH 1.0 and 7.2), whereby capsules were characterized for IB release. The results from the release of IB were analyzed using different parameters, namely, the similarity factor (f2), the dissolution efficiency (DE) and the amounts released at a certain time (30, 60 and 180 min) and compared statistically (a = 0.05). The release of IB from the minitablets showed no dependency on the amount of water used in the formation of the complexes. Differences were due to the compaction force used or the presence of a shell for the capsules. The differences observed were mostly due to the characteristics of the particles (dependent on the method considered on the formation of the complexes) and neither to the dosage form nor to the complex of the IB

    The influence of the preparation methods on the inclusion of model drugs in a β-cyclodextrin cavity

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in European Journal of Pharmaceutics and Biopharmaceutics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Eur J Pharm Biopharm. 2009 Feb;71(2):377-386. Epub 2008 Oct 17.The work aims to prove the complexation of two model drugs (ibuprofen, IB and indomethacin, IN) by bcyclodextrin (bCD), and the effect of water in such a process, and makes a comparison of their complexation yields. Two methods were considered: kneading of a binary mixture of the drug, bCD, and inclusion of either IB or IN in aqueous solutions of bCD. In the latter method water was removed by air stream, spray-drying and freeze-drying. To prove the formation of complexes in final products, optical microscopy, UV spectroscopy, IR spectroscopy, DSC, X-ray and NMR were considered. Each powder was added to an acidic solution (pH = 2) to quantify the concentration of the drug inside bCD cavity. Other media (pH = 5 and 7) were used to prove the existence of drug not complexed in each powder, as the drugs solubility increases with the pH. It was observed that complexation occurred in all powders, and that the fraction of drug inside the bCD did not depend neither on the method of complexation nor on the processes of drying considered

    Biostratigraphic sequence of Portuguese West-basin. Differentiation during the Lias and Dogger.

    Get PDF
    Depto. de Geodinámica, Estratigrafía y PaleontologíaFac. de Ciencias GeológicasTRUEpu

    Reprint of "Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: effects of chemical composition and surface morphology"

    Get PDF
    refers to​​​​​​​Alisson H.M. da Silva, Stefan J. Raaijman, Cássia S. Santana, José M. Assaf, Janaina F. Gomes, Marc T.M. KoperElectrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: Effects of chemical composition and surface morphologyJournal of Electroanalytical Chemistry, Volume 880, 1 January 2021, Pages 114750The electrocatalytic CO2 reduction reaction (CO2RR) is a promising strategy for producing multi carbon compounds using only CO2 and H2O at room temperature. Significant advances have already been achieved in understanding how some characteristics of copper electrodes, the current state-of-the-art catalyst for multi carbon formation via CO2RR, affect the product spectrum. Advances and insights have been reported for, among others, the effect of crystallographic orientation, active surface area, and composition of M copper (M = Au, Ag, Zn, etc.) materials, and how these alter the distribution of CO2RR products. However, a systematic study evaluating the significance of these variables in the CO2RR to C2+ products is still lacking in the literature and represents an important step in the development of new materials with optimized properties that can be more selective to C2+ compounds. In this paper, we have systematically investigated the effect of the roughness factor, chemical composition, and surface morphology of CuxZny electrocatalysts on the product distribution during CO2RR. Firstly, Cu, Cu90Zn10, and Cu75Zn25 electrodes were exposed to oxidation-reduction cycles to produce Cu and CuxZny electrodes with different morphologies, roughness factors, and chemical composition. Our results show that an increase in the roughness factor and Zn content lead to higher faradaic efficiency (FE) to C2+ products. Furthermore, the influence of the nanoscale morphology is imperative for the production of C2+ compounds. Specifically, nanocubes of Cu and CuxZny presented the highest FE to C2+ products among the different surface morphologies studied in this work (polished flat surface, nanosheres, nanocubes, nanodendrites, and nanocauliflowers), showing that C-C coupling during CO2RR is mainly shape dependent.Catalysis and Surface Chemistr

    Electrocatalytic CO2 reduction to C2+ products on Cu and CuxZny electrodes: effects of chemical composition and surface morphology

    Get PDF
    The electrocatalytic CO2 reduction reaction (CO2RR) is a promising strategy for producing multi-carbon compounds using only CO2 and H2O at room temperature. Significant advances have already been achieved in understanding how some characteristics of copper electrodes, the current state-of-the-art catalyst for multi-carbon formation via CO2RR, affect the product spectrum. Advances and insights have been reported for, among others, the effect of crystallographic orientation, active surface area, and composition of M-copper (M = Au, Ag, Zn, etc.) materials, and how these alter the distribution of CO2RR products. However, a systematic study evaluating the significance of these variables in the CO2RR to C2+ products is still lacking in the literature and represents an important step in the development of new materials with optimized properties that can be more selective to C2+ compounds. In this paper, we have systematically investigated the effect of the roughness factor, chemical composition, and surface morphology of CuxZny electrocatalysts on the product distribution during CO2RR. Firstly, Cu, Cu90Zn10, and Cu75Zn25 electrodes were exposed to oxidation-reduction cycles to produce Cu and CuxZny electrodes with different morphologies, roughness factors, and chemical composition. Our results show that an increase in the roughness factor and Zn content lead to higher faradaic efficiency (FE) to C2+ products. Furthermore, the influence of the nanoscale morphology is imperative for the production of C2+ compounds. Specifically, nanocubes of Cu and CuxZny presented the highest FE to C2+ products among the different surface morphologies studied in this work (polished flat surface, nanosheres, nanocubes, nanodendrites, and nanocauliflowers), showing that CC coupling during CO2RR is mainly shape dependent.Catalysis and Surface Chemistr

    Efficacité de la stimulation du nerf occipital pour les céphalées chroniques réfractaires - Une étude prospective lausannoise [Assessing occipital nerve stimulation efficacy for chronic refractory headaches]

    Get PDF
    We prospectively followed a cohort of 26 subjects for an average period of 41 months who benefited from occipital nerve stimulation (ONS) in the context of chronic refractory headaches. In 17 patients treated, the frequency of headache decreased, and quality of life scores improved significantly. Among these patients, the "very good" response rate was 34 %. In this cohort, treatment-related adverse events are relatively common (42 %) but not severe. While it is difficult to anticipate the risk factors for non-response to treatment, we estimate that the risk of failure may not be related to the duration of the disease, but rather to the number of different preventives attempted prior to ONS

    An investigation of the potential application of chitosan/aloe-based membranes for regenerative medicine

    Get PDF
    A significant number of therapeutics derived from natural polymers and plants have been developed to replace or to be used in conjunction with existing dressing products. The use of the therapeutic properties of aloe vera could be very useful in the creation of active wound dressing materials. The present work was undertaken to examine issues concerning structural features, topography, enzymatic degradation behavior, antibacterial activity and cellular response of chitosan/aloe vera-based membranes. The chitosan/aloe vera-based membranes that were developed displayed satisfactory degradation, roughness, wettability and mechanical properties. A higher antibacterial potency was displayed by the blended membranes. Moreover, in vitro assays demonstrated that these blended membranes have good cell compatibility with primary human dermal fibroblasts. The chitosan/aloe vera-based membranes might be promising wound dressing materials.The authors acknowledge financial support from the Portuguese Foundation for Science and Technology (grants SFRH/BPD/45307/2008 and SFRH/BD/64601/2009), the "Fundo Social Europeu", and the "Programa Diferencial de Potencial Humano". This work was partially supported by the FEDER through POCTEP 0330_IBEROMARE_1_P

    Adsorption dynamics of hydrophobically modified polymers at an air-water interface

    Get PDF
    The adsorption dynamics of a series of hydrophobically modified polymers, PAAαCn, at the air-water interface is studied by measuring the dynamic surface tension. The PAAαCn are composed of a poly(acrylic acid) backbone grafted with a percentage α of C8 or C12 alkyl moieties, at pH conditions where the PAA backbone is not charged. The observed adsorption dynamics is very slow and follows a logarithmic behavior at long times indicating the building of an energy barrier which grows over time. After comparison of our experimental results to models from the literature, a new model which accounts for both the deformation of the incoming polymer coils as well as the deformation of the adsorbed pseudo-brush is described. This model enables to fit very well the experimental data. The two fitting parameters give expected values for the monomer size and for the area per adsorbed polymer chain.This article is uploaded in "arXiv.org" https://arxiv.org/abs/1706.0710
    corecore