3,340 research outputs found
Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles
"This is the peer reviewed version of the following article: Hormeño, Silvia, Paula Gregorio-Godoy, Jorge Pérez-Juste, Luis M. Liz-Marzán, Beatriz H. Juárez, and J. Ricardo Arias-Gonzalez. 2013. Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles. Small 10 (2). Wiley: 376 84. doi:10.1002/smll.201301912, which has been published in final form at https://doi.org/10.1002/smll.201301912. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] Temperature changes in the vicinity of a single absorptive nanostructure caused by local heating have strong implications in technologies such as integrated electronics or biomedicine. Herein, the temperature changes in the vicinity of a single optically trapped spherical Au nanoparticle encapsulated in a thermo¿responsive poly(N¿isopropylacrylamide) shell (Au@pNIPAM) are studied in detail. Individual beads are trapped in a counter¿propagating optical tweezers setup at various laser powers, which allows the overall particle size to be tuned through the phase transition of the thermo¿responsive shell. The experimentally obtained sizes measured at different irradiation powers are compared with average size values obtained by dynamic light scattering (DLS) from an ensemble of beads at different temperatures. The size range and the tendency to shrink upon increasing the laser power in the optical trap or by increasing the temperature for DLS agree with reasonable accuracy for both approaches. Discrepancies are evaluated by means of simple models accounting for variations in the thermal conductivity of the polymer, the viscosity of the aqueous solution and the absorption cross section of the coated Au nanoparticle. These results show that these parameters must be taken into account when considering local laser heating experiments in aqueous solution at the nanoscale. Analysis of the stability of the Au@pNIPAM particles in the trap is also theoretically carried out for different particle sizes.This work has been partially supported by Comunidad de Madrid through NANOBIOMAGNET S2009-MAT-1726 and the Spanish Ministry of Science and Innovation through RYC-2007-01709, RYC-2007-01765 and MAT-2009-13488. P. G-G. acknowledges a Research Initiation Grant at IMDEA Nanociencia. The authors thank Dr. Reinhold Wannemacher for fruitful discussions.Hormeño, S.; Gregorio-Godoy, P.; Pérez-Juste, J.; Liz-Marzán, L.; Juárez, B.; Arias-Gonzalez, JR. (2014). Laser Heating Tunability by Off-Resonant Irradiation of Gold Nanoparticles. Small. 10(2):376-384. https://doi.org/10.1002/smll.201301912S376384102Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2(5), 681-693. doi:10.2217/17435889.2.5.681Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R., & Lin, C. P. (2003). Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles. Biophysical Journal, 84(6), 4023-4032. doi:10.1016/s0006-3495(03)75128-5PEREZJUSTE, J., PASTORIZASANTOS, I., LIZMARZAN, L., & MULVANEY, P. (2005). Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 249(17-18), 1870-1901. doi:10.1016/j.ccr.2005.01.030Averitt, R. D., Sarkar, D., & Halas, N. J. (1997). Plasmon Resonance Shifts of Au-CoatedAu2SNanoshells: Insight into Multicomponent Nanoparticle Growth. Physical Review Letters, 78(22), 4217-4220. doi:10.1103/physrevlett.78.4217Arias-González, J. R., & Nieto-Vesperinas, M. (2001). Resonant near-field eigenmodes of nanocylinders on flat surfaces under both homogeneous and inhomogeneous lightwave excitation. Journal of the Optical Society of America A, 18(3), 657. doi:10.1364/josaa.18.000657Seol, Y., Carpenter, A. E., & Perkins, T. T. (2006). Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Optics Letters, 31(16), 2429. doi:10.1364/ol.31.002429Govorov, A. O., & Richardson, H. H. (2007). Generating heat with metal nanoparticles. Nano Today, 2(1), 30-38. doi:10.1016/s1748-0132(07)70017-8Bendix, P. M., Reihani, S. N. S., & Oddershede, L. B. (2010). Direct Measurements of Heating by Electromagnetically Trapped Gold Nanoparticles on Supported Lipid Bilayers. ACS Nano, 4(4), 2256-2262. doi:10.1021/nn901751wQin, Z., & Bischof, J. C. (2012). Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev., 41(3), 1191-1217. doi:10.1039/c1cs15184cHaro-González, P., Ramsay, W. T., Maestro, L. M., del Rosal, B., Santacruz-Gomez, K., del Carmen Iglesias-de la Cruz, M., … Paterson, L. (2013). Quantum Dot-Based Thermal Spectroscopy and Imaging of Optically Trapped Microspheres and Single Cells. Small, 9(12), 2162-2170. doi:10.1002/smll.201201740Do, J., Schreiber, R., Lutich, A. A., Liedl, T., Rodríguez-Fernández, J., & Feldmann, J. (2012). Design and Optical Trapping of a Biocompatible Propeller-like Nanoscale Hybrid. Nano Letters, 12(9), 5008-5013. doi:10.1021/nl302775eGoldenberg, H., & Tranter, C. J. (1952). Heat flow in an infinite medium heated by a sphere. British Journal of Applied Physics, 3(9), 296-298. doi:10.1088/0508-3443/3/9/307Pustovalov, V. K. (2005). Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chemical Physics, 308(1-2), 103-108. doi:10.1016/j.chemphys.2004.08.005Pustovalov, V. K., & Babenko, V. A. (2004). Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine. Laser Physics Letters, 1(10), 516-520. doi:10.1002/lapl.200410111Richardson, H. H., Hickman, Z. N., Govorov, A. O., Thomas, A. C., Zhang, W., & Kordesch, M. E. (2006). Thermooptical Properties of Gold Nanoparticles Embedded in Ice: Characterization of Heat Generation and Melting. Nano Letters, 6(4), 783-788. doi:10.1021/nl060105lSiems, A., Weber, S. A. L., Boneberg, J., & Plech, A. (2011). Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles. New Journal of Physics, 13(4), 043018. doi:10.1088/1367-2630/13/4/043018Shah, J., Park, S., Aglyamov, S., Larson, T., Ma, L., Sokolov, K., … Emelianov, S. Y. (2008). Photoacoustic imaging and temperature measurement for photothermal cancer therapy. Journal of Biomedical Optics, 13(3), 034024. doi:10.1117/1.2940362Baffou, G., Kreuzer, M. P., Kulzer, F., & Quidant, R. (2009). Temperature mapping near plasmonic nanostructures using fluorescence polarization anisotropy. Optics Express, 17(5), 3291. doi:10.1364/oe.17.003291Gupta, A., Kane, R. S., & Borca-Tasciuc, D.-A. (2010). Local temperature measurement in the vicinity of electromagnetically heated magnetite and gold nanoparticles. Journal of Applied Physics, 108(6), 064901. doi:10.1063/1.3485601Maestro, L. M., Haro-González, P., Coello, J. G., & Jaque, D. (2012). Absorption efficiency of gold nanorods determined by quantum dot fluorescence thermometry. Applied Physics Letters, 100(20), 201110. doi:10.1063/1.4718605Jones, C. D., & Lyon, L. A. (2000). Synthesis and Characterization of Multiresponsive Core−Shell Microgels. Macromolecules, 33(22), 8301-8306. doi:10.1021/ma001398mDas, M., Sanson, N., Fava, D., & Kumacheva, E. (2007). Microgels Loaded with Gold Nanorods: Photothermally Triggered Volume Transitions under Physiological Conditions†. Langmuir, 23(1), 196-201. doi:10.1021/la061596sKarg, M., Pastoriza-Santos, I., Pérez-Juste, J., Hellweg, T., & Liz-Marzán, L. M. (2007). Nanorod-Coated PNIPAM Microgels: Thermoresponsive Optical Properties. Small, 3(7), 1222-1229. doi:10.1002/smll.200700078Sershen, S. R., Westcott, S. L., Halas, N. J., & West, J. L. (2000). Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. Journal of Biomedical Materials Research, 51(3), 293-298. doi:10.1002/1097-4636(20000905)51:33.0.co;2-tSvoboda, K., & Block, S. M. (1994). Optical trapping of metallic Rayleigh particles. Optics Letters, 19(13), 930. doi:10.1364/ol.19.000930Arias-González, J. R., & Nieto-Vesperinas, M. (2003). Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. Journal of the Optical Society of America A, 20(7), 1201. doi:10.1364/josaa.20.001201Hansen, P. M., Bhatia, V. K., Harrit, N., & Oddershede, L. (2005). Expanding the Optical Trapping Range of Gold Nanoparticles. Nano Letters, 5(10), 1937-1942. doi:10.1021/nl051289rHormeño, S., Bastús, N. G., Pietsch, A., Weller, H., Arias-Gonzalez, J. R., & Juárez, B. H. (2011). Plasmon-Exciton Interactions on Single Thermoresponsive Platforms Demonstrated by Optical Tweezers. Nano Letters, 11(11), 4742-4747. doi:10.1021/nl202560jRodríguez-Fernández, J., Fedoruk, M., Hrelescu, C., Lutich, A. A., & Feldmann, J. (2011). Triggering the volume phase transition of core–shell Au nanorod–microgel nanocomposites with light. Nanotechnology, 22(24), 245708. doi:10.1088/0957-4484/22/24/245708Kyrsting, A., Bendix, P. M., Stamou, D. G., & Oddershede, L. B. (2011). Heat Profiling of Three-Dimensionally Optically Trapped Gold Nanoparticles using Vesicle Cargo Release. Nano Letters, 11(2), 888-892. doi:10.1021/nl104280cMao, H., Ricardo Arias-Gonzalez, J., Smith, S. B., Tinoco, I., & Bustamante, C. (2005). Temperature Control Methods in a Laser Tweezers System. Biophysical Journal, 89(2), 1308-1316. doi:10.1529/biophysj.104.054536Hormeño, S., Ibarra, B., Chichón, F. J., Habermann, K., Lange, B. M. H., Valpuesta, J. M., … Arias-Gonzalez, J. R. (2009). Single Centrosome Manipulation Reveals Its Electric Charge and Associated Dynamic Structure. Biophysical Journal, 97(4), 1022-1030. doi:10.1016/j.bpj.2009.06.004Honda, M., Saito, Y., Smith, N. I., Fujita, K., & Kawata, S. (2011). Nanoscale heating of laser irradiated single gold nanoparticles in liquid. Optics Express, 19(13), 12375. doi:10.1364/oe.19.012375Ionov, L., Stamm, M., & Diez, S. (2006). Reversible Switching of Microtubule Motility Using Thermoresponsive Polymer Surfaces. Nano Letters, 6(9), 1982-1987. doi:10.1021/nl0611539Pelton, R. (2000). Temperature-sensitive aqueous microgels. Advances in Colloid and Interface Science, 85(1), 1-33. doi:10.1016/s0001-8686(99)00023-8Garner, B. W., Cai, T., Ghosh, S., Hu, Z., & Neogi, A. (2009). Refractive Index Change Due to Volume-Phase Transition in Polyacrylamide Gel Nanospheres for Optoelectronics and Bio-photonics. Applied Physics Express, 2, 057001. doi:10.1143/apex.2.057001Schmidt, S., Motschmann, H., Hellweg, T., & von Klitzing, R. (2008). Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels: A combined AFM and ellipsometry study. Polymer, 49(3), 749-756. doi:10.1016/j.polymer.2007.12.025Sánchez-Iglesias, A., Grzelczak, M., Rodríguez-González, B., Guardia-Girós, P., Pastoriza-Santos, I., Pérez-Juste, J., … Liz-Marzán, L. M. (2009). Synthesis of Multifunctional Composite Microgels via In Situ Ni Growth on pNIPAM-Coated Au Nanoparticles. ACS Nano, 3(10), 3184-3190. doi:10.1021/nn9006169Johnson, P. B., & Christy, R. W. (1972). Optical Constants of the Noble Metals. Physical Review B, 6(12), 4370-4379. doi:10.1103/physrevb.6.4370Aden, A. L., & Kerker, M. (1951). Scattering of Electromagnetic Waves from Two Concentric Spheres. Journal of Applied Physics, 22(10), 1242-1246. doi:10.1063/1.1699834Wang, M. C., & Uhlenbeck, G. E. (1945). On the Theory of the Brownian Motion II. Reviews of Modern Physics, 17(2-3), 323-342. doi:10.1103/revmodphys.17.323Berg-Sørensen, K., & Flyvbjerg, H. (2004). Power spectrum analysis for optical tweezers. Review of Scientific Instruments, 75(3), 594-612. doi:10.1063/1.1645654Andrä, W., d’ Ambly, C. ., Hergt, R., Hilger, I., & Kaiser, W. . (1999). Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 194(1-3), 197-203. doi:10.1016/s0304-8853(98)00552-6Sengers, J. V., & Watson, J. T. R. (1986). Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance. Journal of Physical and Chemical Reference Data, 15(4), 1291-1314. doi:10.1063/1.555763Andersson, O., & Johari, G. P. (2011). Effect of pressure on thermal conductivity and pressure collapse of ice in a polymer-hydrogel and kinetic unfreezing at 1 GPa. The Journal of Chemical Physics, 134(12), 124903. doi:10.1063/1.3568817Arai, F., Ng, C., Maruyama, H., Ichikawa, A., El-Shimy, H., & Fukuda, T. (2005). On chip single-cell separation and immobilization using optical tweezers and thermosensitive hydrogel. Lab on a Chip, 5(12), 1399. doi:10.1039/b502546jCoelho, J. M. P., Abreu, M. A., & Carvalho Rodrigues, F. (2004). High-speed laser cutting of superposed thermoplastic films: thermal modeling and process characterization. Optics and Lasers in Engineering, 42(1), 27-39. doi:10.1016/s0143-8166(03)00071-xDavidson, S. R. H., & Sherar, M. D. (2003). Measurement of the thermal conductivity of polyacrylamide tissue-equivalent material. International Journal of Hyperthermia, 19(5), 551-562. doi:10.1080/02656730310001607995HOARE, T., & PELTON, R. (2008). Characterizing charge and crosslinker distributions in polyelectrolyte microgels. Current Opinion in Colloid & Interface Science, 13(6), 413-428. doi:10.1016/j.cocis.2008.03.004Carregal-Romero, S., Buurma, N. J., Pérez-Juste, J., Liz-Marzán, L. M., & Hervés, P. (2010). Catalysis by Au@pNIPAM Nanocomposites: Effect of the Cross-Linking Density. Chemistry of Materials, 22(10), 3051-3059. doi:10.1021/cm903261bMurphy, K. P., & Freire, E. (1992). Thermodynamics of Structural Stability and Cooperative Folding Behavior in Proteins. Advances in Protein Chemistry, 313-361. doi:10.1016/s0065-3233(08)60556-2Evans, J. S., Sun, Y., Senyuk, B., Keller, P., Pergamenshchik, V. M., Lee, T., & Smalyukh, I. I. (2013). Active Shape-Morphing Elastomeric Colloids in Short-Pitch Cholesteric Liquid Crystals. Physical Review Letters, 110(18). doi:10.1103/physrevlett.110.187802Sun, Y., Evans, J. S., Lee, T., Senyuk, B., Keller, P., He, S., & Smalyukh, I. I. (2012). Optical manipulation of shape-morphing elastomeric liquid crystal microparticles doped with gold nanocrystals. Applied Physics Letters, 100(24), 241901. doi:10.1063/1.4729143Contreras-Cáceres, R., Pacifico, J., Pastoriza-Santos, I., Pérez-Juste, J., Fernández-Barbero, A., & Liz-Marzán, L. M. (2009). Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Cross-linking, Overall Dimensions, and Core Growth. Advanced Functional Materials, 19(19), 3070-3076. doi:10.1002/adfm.200900481Smith, S. B., Cui, Y., & Bustamante, C. (2003). [7] Optical-trap force transducer that operates by direct measurement of light momentum. Biophotonics, Part B, 134-162. doi:10.1016/s0076-6879(03)61009-
Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV
The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8 TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
- …