28 research outputs found

    Platelet function studies in myeloproliferative neoplasms patients with Calreticulin or JAK2V617F mutation

    Get PDF
    Background: JAK2V617F and Calreticulin (CALR) mutations are the most frequent molecular causes of Phi-negative myeloproliferative neoplasms (MPN). Patients with CALR mutations are at lower risk of thrombosis than patients with JAK2V617F. We hypothesized that CALR-mutated blood platelets would have platelet function defects that might explain why these patients are at lower risk of thrombosis. Objectives: Our main objective was to explore and compare platelet function depending on the MPN molecular marker. Methods: We analyzed platelet function in 16 patients with MPN with CALR mutations and 17 patients with JAK2V617F mutation and compared them with healthy controls. None of these patients was taking antiplatelet therapy. We performed an extensive analysis of platelet function and measured plasmatic soluble P-selectin and CD40L levels. Results: We observed significant defects in platelet aggregation, surface glycoprotein expression, fibrinogen binding, and granule content in platelets from patients with MPN compared with that in controls. Moreover, soluble CD40L and P-selectin levels were elevated in patients with MPN compared with that in controls, suggesting an in vivo platelet preactivation. Comparison of platelet function between patients with CALR and JAK2V617F MPN revealed only minor differences in platelets from patients with CALR. However, these results need to be interpreted within the context of absence of an inflammatory environment that could impact platelet function during MPN. Conclusions: These results do not support the hypothesis that calreticulin-mutated platelets have platelet function defects that could explain the lower thrombotic risk of patients with CALR

    Br J Haematol

    Get PDF
    Immune thrombocytopenia (ITP) is defined by a low platelet count that can trigger potentially life-threatening haemorrhages. Three-quarters of adult patients exhibit persistent or chronic disease and require second-line treatments. Among these, rituximab, an anti-CD20 antibody, has yielded valuable results, with global responses in 60% of patients at 6 months and complete responses in 30% at 5 years. Factors predictive of response to ITP therapy would help physicians choose optimal treatments. We retrospectively analysed clinical courses, biological markers and blood lymphocyte subset numbers of 72 patients on rituximab to treat persistent/chronic ITP followed-up in our department between 2007 and 2021, divided into three groups according to the platelet count at 6 months: complete, partial or no response. Among all studied parameters, a low number of CD3 CD16 CD56 circulating NK cells was associated with the complete response to rituximab. We also found that, after rituximab therapy, complete responders exhibited increased NK and decreased activated CD8 T cell percentages. These results emphasize that the role played by NK cells in ITP remains incompletely known but that factors predictive of response to rituximab can be easily derived using blood lymphocyte subset data

    STAT5-and hypoxia-dependent upregulation of AXL

    Get PDF
    Internal tandem duplication in Fms-like tyrosine kinase 3 (FLT3-ITD) is the most frequent mutation observed in acute myeloid leukemia (AML) and correlates with poor prognosis. FLT3 tyrosine kinase inhibitors are promising for targeted therapy. Here, we investigated mechanisms dampening the response to the FLT3 inhibitor quizartinib, which is specific to the hematopoietic niche. Using AML primary samples and cell lines, we demonstrate that convergent signals from the hematopoietic microenvironment drive FLT3-ITD cell resistance to quizartinib through the expression and activation of the tyrosine kinase receptor AXL. Indeed, cytokines sustained phosphorylation of the transcription factor STAT5 in quizartinib-treated cells, which enhanced AXL expression by direct binding of a conserved motif in its genomic sequence. Likewise, hypoxia, another well-known hematopoietic niche hallmark, also enhanced AXL expression. Finally, in a xenograft mouse model, inhibition of AXL significantly increased the response of FLT3-ITD cells to quizartinib exclusively within a bone marrow environment. These data highlight a new bypass mechanism specific to the hematopoietic niche that hampers the response to quizartinib through combined upregulation of AXL activity. Targeting this signaling offers the prospect of a new therapy to eradicate resistant FLT3-ITD leukemic cells hidden within their specific microenvironment, thereby preventing relapses from FLT3-ITD clones

    The Expression of Myeloproliferative Neoplasm-Associated Calreticulin Variants Depends on the Functionality of ER-Associated Degradation

    Get PDF
    BACKGROUND: Mutations in CALR observed in myeloproliferative neoplasms (MPN) were recently shown to be pathogenic via their interaction with MPL and the subsequent activation of the Janus Kinase - Signal Transducer and Activator of Transcription (JAK-STAT) pathway. However, little is known on the impact of those variant CALR proteins on endoplasmic reticulum (ER) homeostasis. METHODS: The impact of the expression of Wild Type (WT) or mutant CALR on ER homeostasis was assessed by quantifying the expression level of Unfolded Protein Response (UPR) target genes, splicing of X-box Binding Protein 1 (XBP1), and the expression level of endogenous lectins. Pharmacological and molecular (siRNA) screens were used to identify mechanisms involved in CALR mutant proteins degradation. Coimmunoprecipitations were performed to define more precisely actors involved in CALR proteins disposal. RESULTS: We showed that the expression of CALR mutants alters neither ER homeostasis nor the sensitivity of hematopoietic cells towards ER stress-induced apoptosis. In contrast, the expression of CALR variants is generally low because of a combination of secretion and protein degradation mechanisms mostly mediated through the ER-Associated Degradation (ERAD)-proteasome pathway. Moreover, we identified a specific ERAD network involved in the degradation of CALR variants. CONCLUSIONS: We propose that this ERAD network could be considered as a potential therapeutic target for selectively inhibiting CALR mutant-dependent proliferation associated with MPN, and therefore attenuate the associated pathogenic outcomes

    Study of calreticulin in myeloproliferative neoplasms : from allelic burden determination to mechanisms of variant proteins degradation

    No full text
    Des mutations dans le gène de la calréticuline (CALR), codant pour une protéine résidente du réticulum endoplasmique (RE), ont été découvertes récemment dans les syndromes myéloprolifératifs (SMP). Elles sont associées à augmentation de prolifération cellulaire portant spécifiquement sur la lignée mégacaryocytaire. Ceci est le résultat d’une activation constitutive de la signalisation des voies JAK-STAT et MAP Kinases, consécutive à l’interaction des protéines mutantes CALR avec le récepteur à la thrombopoïétine. Plusieurs études ont montré la faible expression de ces protéines mutées dans les cellules, mais aucune n’a déterminé l’impact de leur expression sur l’homéostasie du RE ni les acteurs mis en jeu dans leur élimination. Dans ce travail, nous avons montré que l’expression des protéines CALR mutées ne perturbe pas sensiblement l’équilibre du RE et ne modifie pas la sensibilité des cellules à l’apoptose induite par un stress du RE. Nous avons ensuite démontré dans différents modèles, y compris des cellules engagées dans la différenciation mégacaryocytaire, que les faibles niveaux intracellulaires de variants protéiques CALR n’étaient pas liés à une sécrétion accrue dans le milieu extracellulaire ni à un défaut transcriptionnel. Cette faible expression est en fait la conséquence d’une dégradation mettant en jeu principalement la voie ERAD-protéasome. Dans ce processus, la reconnaissance de motifs glycans n’est pas impliquée, mais EDEM3 semble avoir un rôle majeur puisque son extinction augmente l’expression des formes mutées de CALR. La modulation de cette dégradation pourrait constituer une approche thérapeutique innovante dans les SMP.Mutations in the calreticulin gene (CALR), encoding for an endoplasmic reticulum (ER) resident protein, have recently been discovered in myeloproliferative neoplasms (MPN). They are associated with an increased cell proliferation, specifically in the megakaryocytic lineage. This is the result of a constitutive activation of the JAK-STAT and MAP kinase pathways, following the interaction of mutant calreticulin proteins with the thrombopoietin receptor. Several studies have demonstrated that these mutated proteins are faintly expressed in cells, but none have determined the impact of their expression on ER homeostasis, nor addressed the actors at play in their degradation. In this work, we showed that the expression of mutated CALR proteins does not significantly disturb ER equilibrium, nor does it change the cellular sensitivity to ER stress-induced apoptosis. We next demonstrated in different models including cells committed towards megakaryocytic differentiation that the poor intracellular levels of variant CALR proteins are neither due to enhanced secretion into the extracellular medium, nor to transcriptional defects. This low-level expression is mainly the result of increased degradation, involving the ERAD-proteasome pathway. In this process, the recognition of glycan motifs is not engaged, but EDEM3 seems to be a key component as its extinction increases the expression levels of variant forms of CALR. Modulating this degradation process could represent a therapeutic option for MPN patients

    Etude de la calréticuline dans les syndromes myéloprolifératifs : de la détermination de la charge allélique aux mécanismes de dégradation des variants protéiques

    No full text
    Mutations in the calreticulin gene (CALR), encoding for an endoplasmic reticulum (ER) resident protein, have recently been discovered in myeloproliferative neoplasms (MPN). They are associated with an increased cell proliferation, specifically in the megakaryocytic lineage. This is the result of a constitutive activation of the JAK-STAT and MAP kinase pathways, following the interaction of mutant calreticulin proteins with the thrombopoietin receptor. Several studies have demonstrated that these mutated proteins are faintly expressed in cells, but none have determined the impact of their expression on ER homeostasis, nor addressed the actors at play in their degradation. In this work, we showed that the expression of mutated CALR proteins does not significantly disturb ER equilibrium, nor does it change the cellular sensitivity to ER stress-induced apoptosis. We next demonstrated in different models including cells committed towards megakaryocytic differentiation that the poor intracellular levels of variant CALR proteins are neither due to enhanced secretion into the extracellular medium, nor to transcriptional defects. This low-level expression is mainly the result of increased degradation, involving the ERAD-proteasome pathway. In this process, the recognition of glycan motifs is not engaged, but EDEM3 seems to be a key component as its extinction increases the expression levels of variant forms of CALR. Modulating this degradation process could represent a therapeutic option for MPN patients.Des mutations dans le gène de la calréticuline (CALR), codant pour une protéine résidente du réticulum endoplasmique (RE), ont été découvertes récemment dans les syndromes myéloprolifératifs (SMP). Elles sont associées à augmentation de prolifération cellulaire portant spécifiquement sur la lignée mégacaryocytaire. Ceci est le résultat d’une activation constitutive de la signalisation des voies JAK-STAT et MAP Kinases, consécutive à l’interaction des protéines mutantes CALR avec le récepteur à la thrombopoïétine. Plusieurs études ont montré la faible expression de ces protéines mutées dans les cellules, mais aucune n’a déterminé l’impact de leur expression sur l’homéostasie du RE ni les acteurs mis en jeu dans leur élimination. Dans ce travail, nous avons montré que l’expression des protéines CALR mutées ne perturbe pas sensiblement l’équilibre du RE et ne modifie pas la sensibilité des cellules à l’apoptose induite par un stress du RE. Nous avons ensuite démontré dans différents modèles, y compris des cellules engagées dans la différenciation mégacaryocytaire, que les faibles niveaux intracellulaires de variants protéiques CALR n’étaient pas liés à une sécrétion accrue dans le milieu extracellulaire ni à un défaut transcriptionnel. Cette faible expression est en fait la conséquence d’une dégradation mettant en jeu principalement la voie ERAD-protéasome. Dans ce processus, la reconnaissance de motifs glycans n’est pas impliquée, mais EDEM3 semble avoir un rôle majeur puisque son extinction augmente l’expression des formes mutées de CALR. La modulation de cette dégradation pourrait constituer une approche thérapeutique innovante dans les SMP

    Clonal hematopoiesis are not associated with an increased systemic inflammation, ATHerosclerosis nor incidence of atherothrombosis: Results from the 3-city study (CHIP-3C)

    No full text
    International audienceBackground and Aims : Clonal hematopoiesis of indeterminate Potential (CHIP) is defined by the detection of leukemia-associated mutations in the absence of hematological malignancy. This condition is associated with an increased mortality mainly driven by athero-thrombotic complications. Previous studies in mouse models demonstrated that CHIP increase atherosclerosis development. However the association between CHIP, atherosclerosis and athero-thrombosis remains poorly evaluated in patients. Methods: The 3-city study is a population-based longitudinal study that enrolled individuals aged ≥65 years. In this cohort, we selected 322 persons who had no cardiovascular event before inclusion. Eighty five of them suffered from a myocardial infarction or stroke during the 12-year follow-up. We searched for CHIP by a targeted NGS strategy on DNA collected at inclusion. Anthropomorphic, cardiovascular (risk factors, diet, atherosclerosis) and biological (CRP level) data at inclusion as well as incidence of athero-thrombotic events were compared between patients with or without CHIP. Results: A CHIP was detected in 41% of patients. As described, most patients presented mutations in DNMT3A (46%) and TET2 (30%). Patients with CHIP were slightly older than patients without CHIP (74.2 years VS 73 years, p=0.03). Neither the cardiovascular risk profile, nor the CRP levels (1.66 VS 1.75), nor the number of atheromatous plaques nor the intima-media thickness (0.67 VS 0.68) were different between patients with and without CHIP. The incidence of athero-thrombotic complications (myocardial infarction or stroke) was similar between patients with a CHIP and patients without. Conclusions: In conclusion, CHIP, in particular involving DNMT3A mutations, are not strongly associated with systemic inflammation, atherosclerosis or athero-thrombotic events
    corecore