1,690 research outputs found

    On cost-effective reuse of components in the design of complex reconfigurable systems

    Get PDF
    Design strategies that benefit from the reuse of system components can reduce costs while maintaining or increasing dependability—we use the term dependability to tie together reliability and availability. D3H2 (aDaptive Dependable Design for systems with Homogeneous and Heterogeneous redundancies) is a methodology that supports the design of complex systems with a focus on reconfiguration and component reuse. D3H2 systematizes the identification of heterogeneous redundancies and optimizes the design of fault detection and reconfiguration mechanisms, by enabling the analysis of design alternatives with respect to dependability and cost. In this paper, we extend D3H2 for application to repairable systems. The method is extended with analysis capabilities allowing dependability assessment of complex reconfigurable systems. Analysed scenarios include time-dependencies between failure events and the corresponding reconfiguration actions. We demonstrate how D3H2 can support decisions about fault detection and reconfiguration that seek to improve dependability while reducing costs via application to a realistic railway case study

    Quasi-realistic heterotic-string models with vanishing one-loop cosmological constant and perturbatively broken supersymmetry?

    Full text link
    Quasi-realistic string models in the free fermionic formulation typically contain an anomalous U(1), which gives rise to a Fayet-Iliopoulos D-term that breaks supersymmetry at the one--loop level in string perturbation theory. Supersymmetry is traditionally restored by imposing F- and D-flatness on the vacuum. By employing the standard analysis of flat directions we present a quasi--realistic three generation string model in which stringent F- and D-flat solution do not appear to exist to all orders in the superpotential. We speculate that this result is indicative of the non-existence of supersymmetric flat F- and D-solutions in this model. We provide some arguments in support of this scenario and discuss its potential implications. Bose-Fermi degeneracy of the string spectrum implies that the one--loop partition function and hence the one-loop cosmological constant vanishes in the model. If our assertion is correct, this model may represent the first known example with vanishing cosmological constant and perturbatively broken supersymmetry. We discuss the distinctive properties of the internal free fermion boundary conditions that may correspond to a large set of models that share these properties. The geometrical moduli in this class of models are fixed due to asymmetric boundary conditions, whereas absence of supersymmetric flat directions would imply that the supersymmetric moduli are fixed as well and the dilaton may be fixed by hidden sector nonperturbative effects.Comment: 37 pages, LaTeX. Added discussion on stringent flat directions. PRD published versio

    Automatic Target Classification in Passive ISAR Range-Crossrange Images

    Get PDF

    Semi-realistic Heterotic Z2 X Z2 Orbifold Models

    Full text link
    We consider the heterotic E8 X E8 string theory, which gives rise to four-dimensional Standard-like Models and allows for their SO(10) embedding. We investigate two different schemes of compactification: the free fermionic formulation and the orbifold construction. In the examples presented in the free fermionic formulation we explore the removal of the extra Higgs representations by using the free fermion boundary conditions directly at the string level, rather than in the effective low energy field theory. Moreover, by employing the standard analysis of flat directions we present a quasi-realistic three generation string model in which stringent F- and D- flat solutions do not appear to exist to all orders in the superpotential. We show that, by choosing a non-factorisable compactification lattice, defined by skewing its standard simple roots, we decrease the total number of generations. Finally, the construction of modular invariant partition functions for E8 X E8 orbifold compactifications is presented.Comment: 141 pages, 7 figures, PhD Thesis (Supervisor Prof. A.E.Faraggi

    A solution of a problem of Sophus Lie: Normal forms of 2-dim metrics admitting two projective vector fields

    Full text link
    We give a complete list of normal forms for the 2-dimensional metrics that admit a transitive Lie pseudogroup of geodesic-preserving transformations and we show that these normal forms are mutually non-isometric. This solves a problem posed by Sophus Lie.Comment: This is an extended version of the paper that will appear in Math. Annalen. Some typos were corrected, references were updated, title was changed (as in the journal version). 31 page

    The Civil Rights Attorney\u27s Fees Awards Act of 1976

    Get PDF

    Mass and charge identification of fragments detected with the Chimera Silicon-CsI(Tl) telescopes

    Full text link
    Mass and charge identification of charged products detected with Silicon-CsI(Tl) telescopes of the Chimera apparatus is presented. An identification function, based on the Bethe-Bloch formula, is used to fit empirical correlation between Delta E and E ADC readings, in order to determine, event by event, the atomic and mass numbers of the detected charged reaction products prior to energy calibration.Comment: 24 pages, 7 .jpg figures, submitted to Nucl.Instr.

    Minimal Standard Heterotic String Models

    Get PDF
    Three generation heterotic-string vacua in the free fermionic formulation gave rise to models with solely the MSSM states in the observable Standard Model charged sector. The relation of these models to Z_2 x Z_2 orbifold compactifications dictates that they produce three pairs of untwisted Higgs multiplets. The reduction to one pair relies on the analysis of supersymmetric flat directions, that give superheavy mass to the dispensable Higgs states. We explore the removal of the extra Higgs representations by using the free fermion boundary conditions and hence directly at the string level, rather than in the effective low energy field theory. We present a general mechanism that achieves this reduction by using asymmetric boundary conditions between the left- and right-moving internal fermions. We incorporate this mechanism in explicit string models containing three twisted generations and a single untwisted Higgs doublet pair. We further demonstrate that an additional effect of the asymmetric boundary conditions is to substantially reduce the supersymmetric moduli space.Comment: 20 pages, LaTeX; added reference
    corecore