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Abstract—This paper presents a method for automatic analy-
sis of passive radar 2D ISAR images to evaluate the possibilities
and capabilities of image feature based target extraction and
classification. The goal is to extend signal processing based
detection and recognition methods with image information. The
presented method is fast, easily embeddable and extendable,
works near real-time, and we show its viability for classification
using real passive 2D ISAR images.

I. INTRODUCTION

Passive radar systems use one or more non-cooperative
illuminators of opportunity (e.g., digital video broadcasts [1],
mobile communications [2], digital or FM radio [3], etc.) as
signal sources and one or more controlled receivers. Passive
radars have recently received a renewed interest from the scien-
tific community since the recent technological advances have
made the realization of low cost passive radars [4] and real
time processing possible. Following the recent technological
advances on this field, additional radar techniques are added
to passive radars to make them able to handle several tasks.
One of such task is the radar imaging [5] of non-cooperative
targets though the use of Inverse Synthetic Aperture Radar
(ISAR) methods [6], [7], [8], which in turn may open the door
to Automatic Target Classification (ATC). Although recent
researches have demonstrated the feasibility of passive radar
imaging, the ability to use these ISAR images for target
recognition was formulated but not demonstrated. This paper
is an attempt to prove whether 2D ISAR passive radar images
can be use for such a purpose.

In particular, this paper focuses on target segmentation
and classification using 2D ISAR range-crossrange images of
passive radar systems [9]. The goal of the proposed method is
to have a generic, model-free approach for image-based target
recognition that can be used for various target classes and
image resolutions, can be used with a low number of target
samples, but can be easily extended to support larger target
classes. The most important application area is silent, passive
defense observation for force and area protection (e.g., [4]).

Passive radar technology has been applied to target de-
tection and imaging [2], [7] and for target classification [10],
[11], [12] using signal or image processing approaches. Our
goal is to extract targets and features from 2D passive ISAR

images originating from a multistatic passive radar measure-
ment system that can be used for image-based classification.
When we know possible target structures, works like [12],
[13] provide detection methods using a Markovian approach.
However, our goal is to detect targets without target model
constraints. The contribution of the current work is that it
proposes a lightweight solution, without the need of periodic
retraining, that can also work with a low number of examples.
The proposed method produces a segmentation of the target
from 2D passive ISAR images, based on previous results in
saliency based feature map generation [14], [15]. First, we
produce a fused feature map of directional and textural salient
information, then we extract target regions and their contours
as a basis for classification using shape based recognition and
retrieval [16].

The proposed approach has been tested on data acquired
with the SMARP (Software-defined Multiband Array Passive
Radar) passive radar demonstrator. SMARP has been devel-
oped by the Radar and Surveillance Systems Laboratory (RaSS
Lab.) of the Italian National Inter-University Consortium for
Telecommunications (CNIT). SMARP is a dual band and dual
polarization passive radar operating at UHF (470790MHz)
and S-band (2, 1002, 200MHz). In its current version SMARP
is able to acquire up to 25 MHz bandwidth signal at UHF [4].

A picture of SMARP and some detection and tracking
results are shown in Fig. 1 (a)-(b). Examples of Passive ISAR
images obtained by using the SMARP system are shown in
Fig. 2. Conversely from conventional ISAR images which are
in the range/Doppler domain, such images are in a fully spatial
coordinate system. To get the ISAR images in the range/cross-
range domain, the algorithm proposed in [17] has been applied
in order to scale cross-range axis from Hz to m.

II. THE PROPOSED APPROACH

The main goal of the approach proposed in this paper is
to provide a method that can work with a limited dataset, but
can scale to hundreds or thousands of samples as well. The
method has two steps: i). detection and extraction of targets
from range-crossrange images, along with target features, and
ii). classification of the extracted target based on previously
seen samples.
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Fig. 1. (a) Picture of the SMARP system and (b) detection and tracking
results. Colored lines are the targets AIS trajectories of ships and the black
lines are the radar tracks.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Example raw input range-crossrange images.

The dataset that we used for processing and testing con-
tains real range-crossrange images produced by passive ISAR
measurements, and were provided by partners of the MAPIS
(Multichannel passive ISAR imaging for military applications)
Project Consortium. The dataset contains images of targets
from 8 classes, 128 images in total. Figs. 2 and 3 show
examples of input images that we process for detection and
classification.

A. Detection and Extraction

The goal of the first step is the detection of objects/targets
in obtained range-crossrange images. The method that we
propose is generic, in the sense that does not use any a
priori target information (shape, model, etc.), but relies only
on discriminative image features. A benefit of such an ap-

Fig. 3. Example input range-crossrange images resized according to real size
ratios (having different resolutions).

TABLE I. RESOLUTIONS (METERS/PIXEL) OF THE VARIOUS RAW

INPUT IMAGES, AND THEIR AVERAGE WIDTH/HEIGHT

(CROSSRANGE-RANGE) VALUES (METERS).

Class Im. resolution (m/px) Avg. im. width (m) Avg. im. height (m)

A 1.44-3.12 1767 953

B 0.82-1.58 118 452

C 0.91-2.35 432 706

D 0.81 212 470

E 3.1-3.14 1126 1018

F 4.65-4.69 661 1524

G 1.3-1.32 636 427

H 4.18-4.21 5946 1371

proach is flexibility and independence from possible target
model constraints. The goal here is the detection of the target
candidates, and the extraction of features that can later be used
for classification and recognition. The method that we propose
is based on the extraction of fused morphological, textural and
edge feature maps. The final features that we aim to extract
and retain are the shape/contour of the target and its length.

Input images can be of various size and resolution, and
they can contain targets with different meters/pixel resolution
(e.g., Table. I shows the various resolutions from the used
dataset). As a first step, we resize the raw inputs to have a
ratio consistent with their resolution (e.g., Fig. 3). In Fig. 4 the
raw input image is shown in the first row, the resized image is
in Fig. 4(a), representing a 103.28 meter × 512.39 meter area.
The resized image is processed using the proposed algorithm.

The main concept of the proposed detection and extrac-
tion is to first extract the salient object - target candidate
- in the image, then use the features of this object in the
classification step. As a first step of the object extraction, a
texture map is calculated by using the sparse texture model
of [18] and measuring the statistical textural distinctiveness of
the occurring texture atoms. After extracting rotation-invariant,
neighborhood-based textural representations for the image pix-
els, a global texture model is defined for the image. Textures
are built from repeating patterns, therefore the calculated
texture representations are merged from pixel-level to region-



level to formalize unique patterns, called as texture atoms,
representing the image. The number of these atoms can be
set beforehand, and is usually chosen quite low, resulting in a
sparse texture model of the image (the original method used
20 texture atoms, and we also use the same throughout the
experiments), using the atoms to classify image regions.

From the different atoms, the salient ones are searched
to find those areas of the image that draw visual attention
by defining a statistical texture distinctiveness value for each
atom. Passive ISAR images are different from general imagery,
however the main rules still hold: more distinct regions have
higher statistical texture distinctiveness. Also, in such images
the target is usually close to image center, which also attracts
higher visual attention, therefore these image areas require
higher distinctiveness. The calculated T texture map is shown
in Fig. 4(b), where the higher distinctiveness is represented
by lighter color. The texture map is binarized with the adap-
tive Otsu thresholding [19] to define the initial salient blob
(Fig. 4(c)).

To extract features representing the salient object, the first
step is a robust object outline detection, which is a great
challenge in case of passive ISAR images, as edges can be
quite blurry. To compensate for this challenge, the keypoints
of the detected salient area are extracted and salient directions
are calculated based on the main orientations of the gradient in
the small surroundings around the keypoints. This orientation
feature is then used for an improved edge enhancement by
building a structural feature map. To represent the salient
object as the fusion of structural and textural features, the tex-
tural distinctiveness map is also incorporated in the proposed
boundary detection model.

A modification of the Harris characteristic function [20]
was introduced for noisy and high curvature boundaries [18]
for keypoint extraction. Keypoints are calculated as the local
maxima of the Modified Harris for Edges and Corners (MHEC)
function, which is based on the eigenvalues (λ1 and λ2) of the
Harris matrix, the function looks as the following:

Rmod = max(λ1, λ2). (1)

The calculated MHEC keypoint set is shown in white
in Fig. 4(d), the points are selected in the P keypoint set
if they have Rmod value over an adaptive Otsu threshold.
Based on the P point set, features are searched for object
contour enhancement. Local direction as a feature [21], [22]
may facilitate contour detection by defining the main orienta-
tions where relevant edges should be searched for. To handle
multiple orientation cases (such as corners) and to calculate
proper direction information (not only histogram binning) on
a contour level (not only pixel level), the direction feature
extraction algorithm introduced in [23] was applied and then
the Morphological Feature Contrast (MFC) operator [24] was
used for edge detection.

The local gradient orientation density (LGOD) [25] func-
tion is calculated by analyzing the small Wn(i) neighborhood
(n×n, in our case n = 3) around the keypoints in the P point
set, and the location of its maxima is assigned to the point as

the main orientation. For the ith point (Pi) its form is:

ϕi = argmax
ϕ∈[−90,+90]
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Gaussian smoothing kernel with h = 0.7 bandwidth parameter.

After ϕi is calculated for all points in P , a ϑ(ϕ) orientation
histogram is defined. Orientations belonging to the maxima of
this ϑ(ϕ) histogram are assumed to be the main orientations
of the salient area. To calculate these orientations, Gaussians
are correlated to ϑ(ϕ) iteratively. By measuring the correlation
rate between ϑ(ϕ) and the Gaussian, the iterative process stops
when this rate is starting to decrease. At this point, the main
orientations of the salient area are extracted.

The Morphological Feature Contrast operator [24] first
distinguishes background texture and isolated salient features,
and it has an extension to extract linear features in defined di-
rections. By applying this extension in the previously extracted
main orientations, the relevant features can be emphasized.
By fusing this Salient Direction feature map (MSD) with
the MHEC function (Rmod), the structural information of the
salient area is enhanced in an S structural feature map, which
is shown in Fig. 4(e) and is calculated as follows:

S = max(max(0, log(MSD)),max(0, log(Rmod))). (3)

By this point, only structural information is applied for
object contour detection. To also incorporate textural informa-
tion, the T texture map (Fig. 4(b)) is fused with the S structural
feature map (with weight γ = 0.3) resulting in an improved
object contour representation (Fig. 4(f)):

C = γ |∇(S(x, y))|+ (1− γ) |∇(T (x, y))| . (4)

By applying adaptive Otsu thresholding on the C object
feature map, the binary contours are defined (Fig. 4(g)) for
further processing steps. The 5 biggest blobs are selected,
followed by the extraction of contiguous blobs and extracting
their contours (Fig. 4(h)). After ordering the blobs by size,
the largest one is selected as the target candidate and its main
length is measured (Fig. 4(i)).

Fig. 5 shows some examples for input images and the final
results of the above described target detection and extraction
steps.

B. Classification

The goal of the classification step is using extracted fea-
tures to recognize targets from the same class later. Since
we do not have, and it would be extremely hard to obtain a
large enough dataset to train deep convolutional networks for
classification, our approach was to find a method that can work
with a small dataset but is able to scale to larger datasets as
well. The proposed solution does not need periodic re-training,
is easy to extend with new target classes, and is part of a
classification process that is invariant to target rotation.

First, we take the targets extracted from the previous step,
and extract their contours. For classification, the contour of



(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 4. The process of the segmentation and extraction, visualized.

Fig. 5. Examples of input images (top) and final extracted regions and main
lengths (bottom).

the candidate is transformed into a rotation invariant tangent
function representation [26]. To obtain a target class estimate,
we propose a method based on [16], with a point of view
of content based retrieval. Using the available labeled dataset,
we construct an index structure [27] which indexes the dataset
based on the comparison of the extracted shape descriptors
(i.e., turning function representations). The index structure is
using BK*-trees described in detail in [27], in which a node
can have multiple children, each child falling into a specific
difference interval from its parent.

In this solution, the classification of a target becomes a
content based retrieval step: an input target is a query, and we
find the most similar nodes in the index structure, assigning
the class of the most similar results as the class of the queried
target.

Because of the index tree’s structure, when looking for
similar nodes and traversing the tree, large parts of the index
can be disregarded at every node. This structure has multiple
benefits: it is easy to extend with new elements, which only
need to be added to the tree, thus no full reconstruction is
necessary; we can use it to not only get a single class estimate

Fig. 6. Comparison of the first (1), majority of first three (3) and majority
of first ten (10) approaches (for classes A-D).

TABLE II. NORMALIZED CONFUSION MATRIX.

A B C D E F G H

A 0.64 0.14 0.21 0.00 0.00 0.00 0.00 0.00

B 0.00 0.38 0.06 0.13 0.00 0.19 0.00 0.25

C 0.13 0.00 0.67 0.07 0.07 0.00 0.00 0.07

D 0.00 0.27 0.18 0.55 0.00 0.00 0.00 0.00

E 0.00 0.00 0.00 0.00 0.56 0.00 0.33 0.11

F 0.00 0.17 0.06 0.06 0.06 0.28 0.33 0.06

G 0.00 0.00 0.00 0.00 0.07 0.00 0.93 0.00

H 0.00 0.06 0.00 0.00 0.00 0.06 0.06 0.83

for a query target, but to obtain the first N most similar
candidates as well, being able to keep a constant statistics of
the class estimates and propose the most frequent estimate as
the target class; it is also a very lightweight solution, a class
estimation step requiring less than 0.2s (1.6GHz Core i5); it
is also easy to parallelize, since we can run multiple retrieval
steps on the index in parallel, thus multiple targets can be
classified simultaneously.

Using the shape representation of an extracted target,
we classify the target by performing a retrieval step on the
available index and taking the best results as an indicator of
the class.

III. EVALUATION

As mentioned above, we used a dataset of 128 real passive
ISAR range-crossrange images of 8 targets, 2 aerial (planes),
6 nautical (ships). We label these classes with letters A to H.

Using the above described index structure, we performed
retrievals on the indexed dataset to find target classes. For
evaluation, we indexed the dataset and performed retrievals
for each dataset element, discarding the first result (which was
always the input/query image).

First, we used a smaller subset (classes A-D, containing
56 samples), to perform retrievals where we evaluated the first
best match, the majority of the first 3 matches, and the majority
of the first 10 matches to obtain a class estimate. Fig. 6 shows
the average recognition rates for these retrievals: the class
estimate of a target gets better if we take into consideration not
only the closest match, but a statistics of matches. In practice
this means, that when we have more samples of the same target
class incorporated in the index structure, the recognition of a
target class will improve (i.e., the more we see the same class,
the better we will be able to recognize it).

For our evaluations, we used the third approach: for each
queried target image, we retrieve the 10 closes matches and
take the majority of the results as the class estimate. Table
II shows the normalized confusion values of the classification



Fig. 7. Average recognition rates for the proposed method.

Fig. 8. Average recognition rates for the SVM approaches, the decision tree
and kNN methods and the proposed method.

using the full dataset, and Fig. 7 shows the average recognition
rates for the used classes. From these results we can see that
some classes were well recognized (94%), others had a lower
recognition rate (28%), the average recognition rate being 61%.

To put these results into perspective, we also evaluated
other classification methods on the same dataset. First, we
ran SVM (support vector machine) classifications, using his-
togram of oriented gradients and local binary pattern features,
and we show the classification results in Fig. 8. We used
the Matlab SVM implementation and tried linear (SVML),
Gaussian (SVMG), RBF (SVMR) and polynomial (SVMP)
kernels. We also tried decision tree (Dec.tree) and k nearest
neighbor (kNN) learner templates. All versions were run 10
times, with random 75% of the dataset used for training and
25% for testing, and averaging the results. The results show
that the best SVM average (SVML+HOG: 70%) is similar to
our proposed results.

However, we also measured training/indexing and predic-
tion/retrieval times for all methods, and we show in Table III
the results of those methods that are close to the proposed in
average recognition rates, namely HOG-based SVM, decision
trees and kNN. Compared to methods with similar recognition
rate, the proposed method is more lightweight and faster both
in indexing and in retrieval. We also need to keep in mind
here, that the proposed approach only needs to build the index
once (with later elements added to the index tree), while for
the others training needs to be performed repeatedly (with
increased time) when new target classes/elements need to be
added to the model.

To showcase another benefit and strength of the proposed
approach, we performed another evaluation step. We created
2 rotated (with 45 and 135 degrees) versions of 1 raw input
image from each class (16 images in total), and tried to classify
these rotated versions using the proposed approach and the

TABLE III. INDEXING/TRAINING AND CLASSIFICATION/PREDICTION

TIMES (S) FOR THE PROPOSED METHOD, SVM, DECISION TREES AND

KNN.

Methods Indexing/training (s) Classification/prediction (s)

Proposed 2.87 0.20
SVML+HOG 17.39 1.79
SVMP+HOG 58.38 8.63

Dec.tree(HOG) 107.12 0.11
KNN(HOG) 23.02 16.30

(a)

(b)

Fig. 9. Samples of artificially rotated raw inputs.

closest methods from Fig. 8. The rotated images were not
included in the indexing and in the model training steps, only
used as unknown input targets. Fig. 9 shows some examples
of such rotated images. The goal of this evaluation step is
to show that the proposed method is strong in recognizing
the class of targets which are rotated versions of targets seen
before (i.e., have samples of the target in the index, but from
different angles). Fig. 10 shows average recognition rates for
the rotated inputs (2 images for each class, averaged). The
results show that the proposed method could correctly classify
the rotated targets, while the other approaches mostly failed.

As final examples, Fig. 11 shows two examples of input
passive ISAR range-crossrange images (with target regions
zoomed in) and the first 3 matches from the index.

IV. CONCLUSION

In this paper we presented an automatic target extraction
and classification method for passive multistatic ISAR range-
crossrange images, to show the possibility and capability of
image feature based approaches for such tasks. The presented
approach handles the classification from a content based re-
trieval point of view, providing several benefits: can work with
a small number of samples, moreover, it is easy to extend
with more data; it is lightweight and can handle multi-target
classification as well; does not need re-training as traditional
machine learning approaches; it can handle the classification of
rotated targets; its robustness can be increased by incorporating
more variations of class samples. The proposed approach is
lightweight enough to be embeddable to existing ATR systems
that incorporate passive multistatic ISAR imaging. In the future
we hope to further increase the robustness and speed of the
approach.
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