801 research outputs found

    Beat-to-beat variability of microvascular peripheral resistances assessed with a non-invasive approach

    Get PDF
    The pressure-flow relationship at peripheral level is non-invasively studied in human subjects: the impedance function and the beat-to-beat variability series of microvascular peripheral resistance are estimated. The frequency content of this variability signal is compared to those of more classical variability series at rest and during mild supine physical exercise

    EFFICACY AND TOLERABILITY OF LERCANIDIPINE IN ELDERLY PATIENTS WITH MILD TO MODERATE HYPERTENSION IN A PLACEBO-CONTROLLED, DOUBLE-BLIND STUDY

    Get PDF
    Цель. Оценить эффективность лерканидипина (антагониста кальция из группы дигидропиридинов) у пожилых больных артериальной гипертонией (АГ). Материал и методы. В многоцентровое рандомизированное двойное слепое плацебо-контролируемое исследование включены 144 больных в возрасте 60-85 лет, разделенных на группы, получавших лерканидипин в дозе 10 мг или плацебо в течение 4 нед. При недостаточной антигипертензивной эффективности исходную дозу лерканидипина увеличивали (вплоть до 30 мг один раз/день в течение 12 нед).  Результаты. Диастолическое артериальное давление (АД) под действием лерканидипина в дозе 10 мг снижалось в большей степени (-10,3 мм рт.ст.), чем под действием плацебо (-6,1 мм рт.ст.; p<0,05). Доля больных, положительно ответивших на прием лерканидипина, также была выше, чем при приеме плацебо (59,1% и 37,8 %, соответственно; p<0,05). При увеличении дозы препарата до 20 мг доля больных, положительно ответивших на лечение, возросла до 69,4%; увеличение дозы до 30 мг потребовалось лишь небольшому числу пациентов. Частота сердечных сокращений и лабораторные показатели на фоне лечения не менялись. Процент больных с побочными эффектами был одинаковым в обеих группах. Заключение. Прием лерканидипина один раз в день значительно снижает АД у пожилых пациентов с легкой и умеренной АГ . Эффект сохраняется в течение 24 ч и не сопровождается рефлекторной тахикардией. Препарат хорошо переносится и, учитывая его фармакологические и фармакодинамические особенности, может быть рекомендован, особенно пожилым пациентам

    Phase shifts of synchronized oscillators and the systolic/diastolic blood pressure relation

    Get PDF
    We study the phase-synchronization properties of systolic and diastolic arterial pressure in healthy subjects. We find that delays in the oscillatory components of the time series depend on the frequency bands that are considered, in particular we find a change of sign in the phase shift going from the Very Low Frequency band to the High Frequency band. This behavior should reflect a collective behavior of a system of nonlinear interacting elementary oscillators. We prove that some models describing such systems, e.g. the Winfree and the Kuramoto models offer a clue to this phenomenon. For these theoretical models there is a linear relationship between phase shifts and the difference of natural frequencies of oscillators and a change of sign in the phase shift naturally emerges.Comment: 8 figures, 9 page

    Sequential Modulation of Cardiac Autonomic Control Induced by Cardiopulmonary and Arterial Baroreflex Mechanisms

    Get PDF
    Background—Nonhypotensive lower body negative pressure (LBNP) induces a reflex increase in forearm vascular resistance and muscle sympathetic neural discharge without affecting mean heart rate. We tested the hypothesis that a reflex change of the autonomic modulation of heartbeat might arise during low intensity LBNP without changes of mean heart rate.Methods and Results—Ten healthy volunteers underwent plasma catecholamine evaluation and a continuous recording of ECG, finger blood pressure, respiratory activity, and central venous pressure (CVP) during increasing levels of LBNP up to −40 mm Hg. Spectrum and cross-spectrum analyses assessed the changes in the spontaneous variability of R-R interval, respiration, systolic arterial pressure (SAP), and CVP and in the gain (αLF) of arterial baroreflex control of heart rate. Baroreceptor sensitivity was also evaluated by the SAP/R-R spontaneous sequences technique. LBNP began decreasing significantly: CVP at −10, R-R interval at −20, SAP at −40, and the indexes αLFand baroreceptor sensitivity at −30 and −20 mm Hg, compared with baseline conditions. Plasma norepinephrine increased significantly at −20 mm Hg. The normalized low-frequency component of R-R variability (LFR-R) progressively increased and was significantly higher than in the control condition at −15 mm Hg.Conclusions—Nonhypotensive LBNP elicits a reflex increase of cardiac sympathetic modulation, as evaluated by LFR-R, which precedes the changes in the hemodynamics and in the indexes of arterial baroreflex control

    Algorithm for the classification of multi-modulating signals on the electrocardiogram

    Get PDF
    This article discusses the algorithm to measure electrocardiogram (ECG) and respiration simultaneously and to have the diagnostic potentiality for sleep apnoea from ECG recordings. The algorithm is composed by the combination with the three particular scale transform of a(j)(t), u(j)(t), o(j)(a(j)) and the statistical Fourier transform (SFT). Time and magnitude scale transforms of a(j)(t), u(j)(t) change the source into the periodic signal and τ(j) = o(j)(a(j)) confines its harmonics into a few instantaneous components at τ(j) being a common instant on two scales between t and τ(j). As a result, the multi-modulating source is decomposed by the SFT and is reconstructed into ECG, respiration and the other signals by inverse transform. The algorithm is expected to get the partial ventilation and the heart rate variability from scale transforms among a(j)(t), a(j+1)(t) and u(j+1)(t) joining with each modulation. The algorithm has a high potentiality of the clinical checkup for the diagnosis of sleep apnoea from ECG recordings

    Impact of gonadectomy on blood pressure regulation in ageing male and female rats

    Get PDF
    Sexual dimorphism in blood pressure has been associated with differential expression of the angiotensin II (AII) receptors and with activity of the nervous system. It is generally accepted that aging affects kidney function as well as autonomic nervous system and hormonal balance. Given that hypertension is more prevalent in men than women until women reach their seventh decade we hypothesised that females would be relatively protected from adverse effects of ageing compared to males, and that this would be mediated by the protective effect of ovarian steroids. Intact and gonadectomised male and female normotensive Wistar rats aged 6, 12 and 18 months were used to study renal function, blood pressure, heart rate and blood pressure variability. We observed that intact females had lower levels of proteinuria and higher (12.5%) creatinine clearance compared to intact males, and that this difference was abolished by castration but not by ovariectomy. Ovariectomy resulted in a change by 9% in heart rate, resulting in similar cardiovascular parameters to those observed in males or gonadectomised males. Spectral analysis of systolic blood pressure revealed that high frequency power spectra were significantly elevated in the females vs. males and were reduced by ovariectomy. Taken altogether the results show that females are protected from age-related declining renal function and to a lesser extent from rising blood pressure in comparison to males. Whilst ovariectomy had some deleterious effects in females, the strongest effects were associated with gonadectomy in males, suggesting a damaging effect of male hormones

    Biologic Rhythms Derived from Siberian Mammoths' Hairs

    Get PDF
    Hair is preserved for millennia in permafrost; it enshrines a record of biologic rhythms and offers a glimpse at chronobiology as it was in extinct animals. Here we compare biologic rhythms gleaned from mammoth's hairs with those of modern human hair. Four mammoths' hairs came from varying locations in Siberia 4600 km, four time zones, apart ranging in age between 18,000 and 20,000 years before present. We used two contemporaneous human hairs for comparison. Power spectra derived from hydrogen isotope ratios along the length of the hairs gave insight into biologic rhythms, which were different in the mammoths depending on location and differed from humans. Hair growth for mammoths was ∼31 cms/year and ∼16 cms/year for humans. Recurrent annual rhythms of slow and fast growth varying from 3.4 weeks/cycles to 8.7 weeks/cycles for slow periods and 1.2 weeks/cycles to 2.2 weeks/cycles for fast periods were identified in mammoth's hairs. The mineral content of mammoth's hairs was measured by electron microprobe analysis (k-ratios), which showed no differences in sulfur amongst the mammoth hairs but significantly more iron then in human hair. The fractal nature of the data derived from the hairs became evident in Mandelbrot sets derived from hydrogen isotope ratios, mineral content and geographic location. Confocal microscopy and scanning electron microscopy showed varied degrees of preservation of the cuticle largely independent of age but not location of the specimens. X-ray fluorescence microprobe and fluorescence computed micro-tomography analyses allowed evaluation of metal distribution and visualization of hollow tubes in the mammoth's hairs. Seasonal variations in iron and copper content combined with spectral analyses gave insights into variation in food intake of the animals. Biologic rhythms gleaned from power spectral plots obtained by modern methods revealed life style and behavior of extinct mega-fauna

    Stable Isotope Ratios in Hair and Teeth Reflect Biologic Rhythms

    Get PDF
    Biologic rhythms give insight into normal physiology and disease. They can be used as biomarkers for neuronal degenerations. We present a diverse data set to show that hair and teeth contain an extended record of biologic rhythms, and that analysis of these tissues could yield signals of neurodegenerations. We examined hair from mummified humans from South America, extinct mammals and modern animals and people, both healthy and diseased, and teeth of hominins. We also monitored heart-rate variability, a measure of a biologic rhythm, in some living subjects and analyzed it using power spectra. The samples were examined to determine variations in stable isotope ratios along the length of the hair and across growth-lines of the enamel in teeth. We found recurring circa-annual periods of slow and fast rhythms in hydrogen isotope ratios in hair and carbon and oxygen isotope ratios in teeth. The power spectra contained slow and fast frequency power, matching, in terms of normalized frequency, the spectra of heart rate variability found in our living subjects. Analysis of the power spectra of hydrogen isotope ratios in hair from a patient with neurodegeneration revealed the same spectral features seen in the patient's heart-rate variability. Our study shows that spectral analysis of stable isotope ratios in readily available tissues such as hair could become a powerful diagnostic tool when effective treatments and neuroprotective drugs for neurodegenerative diseases become available. It also suggests that similar analyses of archaeological specimens could give insight into the physiology of ancient people and animals

    Abnormalities in autonomic function in obese boys at-risk for insulin resistance and obstructive sleep apnea.

    Get PDF
    Study objectivesCurrent evidence in adults suggests that, independent of obesity, obstructive sleep apnea (OSA) can lead to autonomic dysfunction and impaired glucose metabolism, but these relationships are less clear in children. The purpose of this study was to investigate the associations among OSA, glucose metabolism, and daytime autonomic function in obese pediatric subjects.MethodsTwenty-three obese boys participated in: overnight polysomnography; a frequently sampled intravenous glucose tolerance test; and recordings of spontaneous cardiorespiratory data in both the supine (baseline) and standing (sympathetic stimulus) postures.ResultsBaseline systolic blood pressure and reactivity of low-frequency heart rate variability to postural stress correlated with insulin resistance, increased fasting glucose, and reduced beta-cell function, but not OSA severity. Baroreflex sensitivity reactivity was reduced with sleep fragmentation, but only for subjects with low insulin sensitivity and/or low first-phase insulin response to glucose.ConclusionsThese findings suggest that vascular sympathetic activity impairment is more strongly affected by metabolic dysfunction than by OSA severity, while blunted vagal autonomic function associated with sleep fragmentation in OSA is enhanced when metabolic dysfunction is also present

    Statistical Coding and Decoding of Heartbeat Intervals

    Get PDF
    The heart integrates neuroregulatory messages into specific bands of frequency, such that the overall amplitude spectrum of the cardiac output reflects the variations of the autonomic nervous system. This modulatory mechanism seems to be well adjusted to the unpredictability of the cardiac demand, maintaining a proper cardiac regulation. A longstanding theory holds that biological organisms facing an ever-changing environment are likely to evolve adaptive mechanisms to extract essential features in order to adjust their behavior. The key question, however, has been to understand how the neural circuitry self-organizes these feature detectors to select behaviorally relevant information. Previous studies in computational perception suggest that a neural population enhances information that is important for survival by minimizing the statistical redundancy of the stimuli. Herein we investigate whether the cardiac system makes use of a redundancy reduction strategy to regulate the cardiac rhythm. Based on a network of neural filters optimized to code heartbeat intervals, we learn a population code that maximizes the information across the neural ensemble. The emerging population code displays filter tuning proprieties whose characteristics explain diverse aspects of the autonomic cardiac regulation, such as the compromise between fast and slow cardiac responses. We show that the filters yield responses that are quantitatively similar to observed heart rate responses during direct sympathetic or parasympathetic nerve stimulation. Our findings suggest that the heart decodes autonomic stimuli according to information theory principles analogous to how perceptual cues are encoded by sensory systems
    corecore