3,201 research outputs found
Note about a second "evidence" for a WIMP annual modulation
This note, with its five questions, is intended to contribute to a
clarification about a claimed "evidence" by the DAMA group of an annual
modulation of the counting rate of a Dark Matter NaI(Tl) detector as due to a
neutralino (SUSY-LSP) Dark Matter candidate.Comment: LaTex, 3 pages, 2 figure
Quasiparticle Chirality in Epitaxial Graphene Probed at the Nanometer Scale
Graphene exhibits unconventional two-dimensional electronic properties
resulting from the symmetry of its quasiparticles, which leads to the concepts
of pseudospin and electronic chirality. Here we report that scanning tunneling
microscopy can be used to probe these unique symmetry properties at the
nanometer scale. They are reflected in the quantum interference pattern
resulting from elastic scattering off impurities, and they can be directly read
from its fast Fourier transform. Our data, complemented by theoretical
calculations, demonstrate that the pseudospin and the electronic chirality in
epitaxial graphene on SiC(0001) correspond to the ones predicted for ideal
graphene.Comment: 4 pages, 3 figures, minor change
Magnetic Reconnection May Control the Ion-Scale Spectral Break of Solar Wind Turbulence
The power spectral density of magnetic fluctuations in the solar wind
exhibits several power-law-like frequency ranges with a well defined break
between approximately 0.1 and 1 Hz in the spacecraft frame. The exact
dependence of this break scale on solar wind parameters has been extensively
studied but is not yet fully understood. Recent studies have suggested that
reconnection may induce a break in the spectrum at a "disruption scale"
, which may be larger than the fundamental ion kinetic scales,
producing an unusually steep spectrum just below the break. We present a
statistical investigation of the dependence of the break scale on the proton
gyroradius , ion inertial length , ion sound radius ,
proton-cyclotron resonance scale and disruption scale as a
function of . We find that the steepest spectral indices of
the dissipation range occur when is in the range of 0.1-1 and the
break scale is only slightly larger than the ion sound scale (a situation
occurring 41% of the time at 1 AU), in qualitative agreement with the
reconnection model. In this range the break scale shows remarkably good
correlation with . Our findings suggest that, at least at low
, reconnection may play an important role in the development of the
dissipation range turbulent cascade and causes unusually steep (steeper than
-3) spectral indices.Comment: Accepted in ApJ
A Modified Version of Taylor's Hypothesis for Solar Probe Plus Observations
The Solar Probe Plus (SPP) spacecraft will explore the near-Sun environment,
reaching heliocentric distances less than . Near Earth,
spacecraft measurements of fluctuating velocities and magnetic fields taken in
the time domain are translated into information about the spatial structure of
the solar wind via Taylor's "frozen turbulence" hypothesis. Near the perihelion
of SPP, however, the solar-wind speed is comparable to the Alfv\'en speed, and
Taylor's hypothesis in its usual form does not apply. In this paper, we show
that, under certain assumptions, a modified version of Taylor's hypothesis can
be recovered in the near-Sun region. We consider only the transverse,
non-compressive component of the fluctuations at length scales exceeding the
proton gyroradius, and we describe these fluctuations using an approximate
theoretical framework developed by Heinemann and Olbert. We show that
fluctuations propagating away from the Sun in the plasma frame obey a relation
analogous to Taylor's hypothesis when and , where is the component of the spacecraft velocity
perpendicular to the mean magnetic field and () is the
Elsasser variable corresponding to transverse, non-compressive fluctuations
propagating away from (towards) the Sun in the plasma frame. Observations and
simulations suggest that, in the near-Sun solar wind, the above inequalities
are satisfied and fluctuations account for most of the fluctuation
energy. The modified form of Taylor's hypothesis that we derive may thus make
it possible to characterize the spatial structure of the energetically dominant
component of the turbulence encountered by SPP.Comment: 5 pages, 1 figure, accepted in ApJ Lette
Les jeunes et leurs visions du féminisme
Nous présentons, dans cet article, une partie des résultats d’une enquête qui portait sur les opinions des jeunes, particulièrement des jeunes femmes, sur le féminisme. Cette enquête a été effectuée auprès d’étudiantes et d’étudiants inscrits dans divers programmes de baccalauréat. Les résultats présentés ici démontrent que les jeunes femmes d’aujourd’hui donnent, dans l’ensemble, une définition relativement favorable du féminisme, mais ne semblent pas voir comme nécessaire leur implication dans le mouvement
On the Conservation of Cross Helicity and Wave Action in Solar-Wind Models with Non-WKB Alfven Wave Reflection
The interaction between Alfven-wave turbulence and the background solar wind
affects the cross helicity in two ways. Non-WKB reflection converts
outward-propagating Alfven waves into inward-propagating Alfven waves and vice
versa, and the turbulence transfers momentum to the background flow. When both
effects are accounted for, the total cross helicity is conserved. In the
special case that the background density and flow speed are independent of
time, the equations of cross-helicity conservation and total-energy
conservation can be combined to recover a well-known equation derived by
Heinemann and Olbert that has been interpreted as a non-WKB generalization of
wave-action conservation. This latter equation (in contrast to cross-helicity
and energy conservation) does not hold when the background varies in time.Comment: 9 pages, 1 figure, in press at Ap
Electron states of mono- and bilayer graphene on SiC probed by STM
We present a scanning tunneling microscopy (STM) study of a
gently-graphitized 6H-SiC(0001) surface in ultra high vacuum. From an analysis
of atomic scale images, we identify two different kinds of terraces, which we
unambiguously attribute to mono- and bilayer graphene capping a C-rich
interface. At low temperature, both terraces show
quantum interferences generated by static impurities. Such interferences are a
fingerprint of -like states close to the Fermi level. We conclude that the
metallic states of the first graphene layer are almost unperturbed by the
underlying interface, in agreement with recent photoemission experiments (A.
Bostwick et al., Nature Physics 3, 36 (2007))Comment: 4 pages, 3 figures submitte
A Calibrated Time Domain Envelope Measurement System for the Behavioral Modeling of Power Amplifiers
This paper presents a set-up which enables the generation and the calibrated time domain measurements of complex envelopes of modulated signals at both ports of non linear microwave power amplifiers. The architecture of the characterization tool is given. Examples of error corrected time domain envelopes at the input / output RF ports of a 36 dBm output power – 30dB power gain L-band SSPA are shown. Futhermore, the use of this characterization tool and a suitable processing of measurement data are applied to a novel measurement based behavioral modeling approach of non linear devices accounting for memory effects
Synthesis and studies of new organic semiconductors based on furan moieties coming from biomass
Date du colloque : 08/2010International audienc
- …