1,195 research outputs found

    An Invasive Mussel (Arcuatula senhousia, Benson 1842) Interacts with Resident Biota in Controlling Benthic Ecosystem Functioning

    Get PDF
    The invasive mussel Arcuatula senhousia has successfully colonized shallow soft sediments worldwide. This filter feeding mussel modifies sedimentary habitats while forming dense populations and efficiently contributes to nutrient cycling. In the present study, the density of A. senhousia was manipulated in intact sediment cores taken within an intertidal Zostera noltei seagrass meadow in Arcachon Bay (French Atlantic coast), where the species currently occurs at levels corresponding to an early invasion stage. It aimed at testing the effects of a future invasion on (1) bioturbation (bioirrigation and sediment mixing) as well as on (2) total benthic solute fluxes across the sediment–water interface. Results showed that increasing densities of A. senhousia clearly enhanced phosphate and ammonium effluxes, but conversely did not significantly affect community bioturbation rates, highlighting the ability of A. senhousia to control nutrient cycling through strong excretion rates with potential important consequences for nutrient cycling and benthic–pelagic coupling at a broader scale. However, it appears that the variability in the different measured solute fluxes were underpinned by different interactions between the manipulated density of A. senhousia and several faunal and/or environmental drivers, therefore underlining the complexity of anticipating the effects of an invasion process on ecosystem functioning within a realistic context

    An Invasive Mussel (Arcuatula senhousia, Benson 1842) Interacts with Resident Biota in Controlling Benthic Ecosystem Functioning

    Get PDF
    The invasive mussel Arcuatula senhousia has successfully colonized shallow soft sediments worldwide. This filter feeding mussel modifies sedimentary habitats while forming dense populations and efficiently contributes to nutrient cycling. In the present study, the density of A. senhousia was manipulated in intact sediment cores taken within an intertidal Zostera noltei seagrass meadow in Arcachon Bay (French Atlantic coast), where the species currently occurs at levels corresponding to an early invasion stage. It aimed at testing the effects of a future invasion on (1) bioturbation (bioirrigation and sediment mixing) as well as on (2) total benthic solute fluxes across the sediment–water interface. Results showed that increasing densities of A. senhousia clearly enhanced phosphate and ammonium effluxes, but conversely did not significantly affect community bioturbation rates, highlighting the ability of A. senhousia to control nutrient cycling through strong excretion rates with potential important consequences for nutrient cycling and benthic–pelagic coupling at a broader scale. However, it appears that the variability in the different measured solute fluxes were underpinned by different interactions between the manipulated density of A. senhousia and several faunal and/or environmental drivers, therefore underlining the complexity of anticipating the effects of an invasion process on ecosystem functioning within a realistic context

    Balanced homodyne detection of Bragg microhologramms in photopolymer for data storage

    No full text
    Wavelength multiplexed holographic bit oriented memories are serious competitors for high capacity data storage systems. For data recording, two interfering beams are required whereas one of them should be blocked for readout in previously proposed systems. This makes the system complex. To circumvent this difficulty and make the device simpler, we validated an architecture for such memories in which the same two beams are used for recording and reading out. This balanced homodyne scheme is validated by recording holograms in a Lippmann architecture

    Metastable and unstable cellular solidification of colloidal suspensions

    Get PDF
    International audienceColloidal particles are often seen as big atoms that can be directly observed in real space. They are therefore playing an increasingly important role as model systems to study processes of interest in condensed matter physics such as melting, freezing and glass transitions. The solidification of colloidal suspensions has long been a puzzling phenomenon with many unexplained features. Here we demonstrate and rationalize the existence of instability and metastability domains in cellular solidification of colloidal suspensions, by direct in situ high-resolution X-ray radiography and tomography observations. We explain such interface instabilities by a partial Brownian diffusion of the particles leading to constitutional supercooling situations. Processing under unstable conditions leads to localized and global kinetic instabilities of the solid/liquid interface , affecting the crystals morphology and particle redistribution behaviour

    High efficiency silicon nitride surface grating couplers

    Get PDF
    High efficiency surface grating couplers for silicon nitride waveguides have been designed, fabricated, and characterized. Coupling efficiencies exceeding 60 % are reported at a wavelength of 1.31 μm, as well as angular and wavelength -3 dB tolerances of 4° and 50 nm, respectively. When the wavelength is increased from 1310 nm to 1450 nm the coupling efficiency progressively decreases but remains above 20 % at 1450 nm. The influence of the duty ratio of the grating has also been investigated: maximum coupling efficiency was obtained at 50 % duty ratio

    Experimental assessment of particle mixing fingerprints in the deposit-feeding bivalve Abra alba (Wood)

    Get PDF
    Particle mixing induced by the deposit-feeding bivalve Abra alba was assessed using a new experimental approach allowing for the tracking of individual particle displacements. This approach combines the adaptation of existing image acquisition techniques with new image analysis software that tracks the position of individual particles. This led to measurements of particle mixing fingerprints, namely the frequency distributions of particle waiting times, and of the characteristics (i.e. direction and length) of their jumps. The validity of this new approach was assessed by comparing the so-measured frequency distributions of jump characteristics with the current qualitative knowledge regarding particle mixing in the genus Abra. Frequency distributions were complex due to the coexistence of several types of particle displacements and cannot be fitted with the most commonly used procedures when using the Continuous Time Random Walk (CTRW) model. Our approach allowed for the spatial analysis of particle mixing, which showed: 1) longer waiting times; 2) more frequent vertical jumps; and 3) shorter jump lengths deep in the sediment column than close to the sediment-water interface. This resulted in lower DbX and DbY (vertical and horizontal particle mixing bioffusion coefficients) deep in the sediment column. Our results underline the needs for: 1) preliminary checks of the adequacy of selected distributions to the species/communities studied; and 2) an assessment of vertical changes in particle mixing fingerprints when using CTRW
    • …
    corecore