96 research outputs found
Epilogue: Democracy in Ghana as a Model for the African Continent
Address by the President of Ghana, His Excellency John Dramani Mahama, to mark the formal end of Kennesaw State Universityâs âYear of Ghanaâ celebrations and academic programs
Recommended from our members
The impact of education in shaping lives: reflections of young people with disabilities in Ghana
There is increasing recognition on the importance of focusing on people with disabilities in international efforts aimed at poverty alleviation. While universal education has been central to these efforts, the specific and additional needs of children with disabilities are often overlooked in policies and programmes. In order to gain a nuanced appreciation of the lives of young people with disabilities in a Ghanaian context, this paper draws on research conducted with young people with disabilities and their significant others in order to understand their educational journeys, employment prospects and perceptions of those around them. In addition to collecting primary data, the latest policy documents related to disability, education and employment are reviewed and statistical analysis undertaken based on the Housing and Population Census 2010. Our research highlights the barriers facing those with disability in accessing quality education. While education was recognised as paramount to leading a better life and participants noted benefits beyond employment such as gaining self-sufficiency and social benefits, unequal educational opportunities underpin some of the reasons for the widening of gaps between those with disabilities and their non-disabled counterparts. Furthermore, while education was seen as important for gaining employment, this was not the case in reality, as young people faced difficulties due to both physical and attitudinal barriers limiting their opportunities for economic and social participation in their communities. The paper concludes by noting that systematic changes in the policy arena are needed to enable youth with disabilities to take their rightful place in mainstream society.This is the accepted author manuscript. The final version is available at http://www.tandfonline.com/doi/abs/10.1080/13603116.2015.1018343
A Spatio-temporal Model of African Animal Trypanosomosis Risk
[b]Background[/b]African animal trypanosomosis (AAT) is a major constraint to sustainable development of cattle farming in sub-Saharan Africa. The habitat of the tsetse fly vector is increasingly fragmented owing to demographic pressure and shifts in climate, which leads to heterogeneous risk of cyclical transmission both in space and time. In Burkina Faso and Ghana, the most important vectors are riverine species, namely Glossina palpalis gambiensis and G. tachinoides, which are more resilient to human-induced changes than the savannah and forest species. Although many authors studied the distribution of AAT risk both in space and time, spatio-temporal models allowing predictions of it are lacking.[b]Methodology/Principal Findings[/b]We used datasets generated by various projects, including two baseline surveys conducted in Burkina Faso and Ghana within PATTEC (Pan African Tsetse and Trypanosomosis Eradication Campaign) national initiatives. We computed the entomological inoculation rate (EIR) or tsetse challenge using a range of environmental data. The tsetse apparent density and their infection rate were separately estimated and subsequently combined to derive the EIR using a "one layer-one model" approach. The estimated EIR was then projected into suitable habitat. This risk index was finally validated against data on bovine trypanosomosis. It allowed a good prediction of the parasitological status (r(2) = 67%), showed a positive correlation but less predictive power with serological status (r(2) = 22%) aggregated at the village level but was not related to the illness status (r(2) = 2%).[b]Conclusions/Significance[/b]The presented spatio-temporal model provides a fine-scale picture of the dynamics of AAT risk in sub-humid areas of West Africa. The estimated EIR was high in the proximity of rivers during the dry season and more widespread during the rainy season. The present analysis is a first step in a broader framework for an efficient risk management of climate-sensitive vector-borne diseases
Coping with climate variability and change in research for development targeting West Africa: Need for paradigm changes
Climate change and variability impact on agriculture in the West African Semi-Arid
Tropics (WASAT). At present WASAT farmers are most concerned by climate
variability which shows the greatest consequences towards the northern drier end of
the region. Relative variability, number of existential droughts, species loss and
variety turnover are highest there. This paper presents experiences made and
approaches developed in the framework of a Research for Development (R4D) project
aiming at preparing WASAT farmers to deal with climate constraints. It is argued that
agro-phytodiversity management is a reasonable approach to deal with climate
variability but that it needs better social organisation to conserve a sufficient number of
crops and varieties. Optimised participation and empowerment of farmers in the R4D
continuum leads to faster progress with respect to innovation testing, adaptation and
sustainable adoption
Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region
<p>Abstract</p> <p>Background</p> <p>As insecticide resistance may jeopardize the successful malaria control programmes in the Mekong region, a large investigation was previously conducted in the Mekong countries to assess the susceptibility of the main malaria vectors against DDT and pyrethroid insecticides. It showed that the main vector, <it>Anopheles epiroticus</it>, was highly pyrethroid-resistant in the Mekong delta, whereas <it>Anopheles minimus sensu lato </it>was pyrethroid-resistant in northern Vietnam. <it>Anopheles dirus sensu stricto </it>showed possible resistance to type II pyrethroids in central Vietnam. <it>Anopheles subpictus </it>was DDT- and pyrethroid-resistant in the Mekong Delta. The present study intends to explore the resistance mechanisms involved.</p> <p>Methods</p> <p>By use of molecular assays and biochemical assays the presence of the two major insecticide resistance mechanisms, knockdown and metabolic resistance, were assessed in the main malaria vectors of the Mekong region.</p> <p>Results</p> <p>Two FRET/MCA assays and one PCR-RFLP were developed to screen a large number of <it>Anopheles </it>populations from the Mekong region for the presence of knockdown resistance (<it>kdr</it>), but no <it>kdr </it>mutation was observed in any of the study species. Biochemical assays suggest an esterase mediated pyrethroid detoxification in <it>An. epiroticus </it>and <it>An. subpictus </it>of the Mekong delta. The DDT resistance in <it>An. subpictus </it>might be conferred to a high GST activity. The pyrethroid resistance in <it>An. minimus s.l</it>. is possibly associated with increased detoxification by esterases and P450 monooxygenases.</p> <p>Conclusion</p> <p>As different metabolic enzyme systems might be responsible for the pyrethroid and DDT resistance in the main vectors, each species may have a different response to alternative insecticides, which might complicate the malaria vector control in the Mekong region.</p
The Impact of Pyrethroid Resistance on the Efficacy of Insecticide-Treated Bed Nets against African Anopheline Mosquitoes: Systematic Review and Meta-Analysis
Background
Pyrethroid insecticide-treated bed nets (ITNs) help contribute to reducing malaria deaths in Africa, but their efficacy is threatened by insecticide resistance in some malaria mosquito vectors. We therefore assessed the evidence that resistance is attenuating the effect of ITNs on entomological outcomes.
Methods and Findings
We included laboratory and field studies of African malaria vectors that measured resistance at the time of the study and used World Health Organizationârecommended impregnation regimens. We reported mosquito mortality, blood feeding, induced exophily (premature exit of mosquitoes from the hut), deterrence, time to 50% or 95% knock-down, and percentage knock-down at 60 min. Publications were searched from 1 January 1980 to 31 December 2013 using MEDLINE, Cochrane Central Register of Controlled Trials, Science Citation Index Expanded, Social Sciences Citation Index, African Index Medicus, and CAB Abstracts. We stratified studies into three levels of insecticide resistance, and ITNs were compared with untreated bed nets (UTNs) using the risk difference (RD). Heterogeneity was explored visually and statistically. Included were 36 laboratory and 24 field studies, reported in 25 records. Studies tested and reported resistance inconsistently. Based on the meta-analytic results, the difference in mosquito mortality risk for ITNs compared to UTNs was lower in higher resistance categories. However, mortality risk was significantly higher for ITNs compared to UTNs regardless of resistance. For cone tests: low resistance, risk difference (RD) 0.86 (95% CI 0.72 to 1.01); moderate resistance, RD 0.71 (95% CI 0.53 to 0.88); high resistance, RD 0.56 (95% CI 0.17 to 0.95). For tunnel tests: low resistance, RD 0.74 (95% CI 0.61 to 0.87); moderate resistance, RD 0.50 (95% CI 0.40 to 0.60); high resistance, RD 0.39 (95% CI 0.24 to 0.54). For hut studies: low resistance, RD 0.56 (95% CI 0.43 to 0.68); moderate resistance, RD 0.39 (95% CI 0.16 to 0.61); high resistance, RD 0.35 (95% CI 0.27 to 0.43). However, with the exception of the moderate resistance category for tunnel tests, there was extremely high heterogeneity across studies in each resistance category (chi-squared test, p<0.00001, I2 varied from 95% to 100%).
Conclusions
This meta-analysis found that ITNs are more effective than UTNs regardless of resistance. There appears to be a relationship between resistance and the RD for mosquito mortality in laboratory and field studies. However, the substantive heterogeneity in the studies' results and design may mask the true relationship between resistance and the RD, and the results need to be interpreted with caution. Our analysis suggests the potential for cumulative meta-analysis in entomological trials, but further field research in this area will require specialists in the field to work together to improve the quality of trials, and to standardise designs, assessment, and reporting of both resistance and entomological outcomes
Kinetics of M1 muscarinic receptor and G protein signaling to phospholipase C in living cells
G proteinâcoupled receptors (GPCRs) mediate responses to external stimuli in various cell types. Early events, such as the binding of ligand and G proteins to the receptor, nucleotide exchange (NX), and GTPase activity at the Gα subunit, are common for many different GPCRs. For Gq-coupled M1 muscarinic (acetylcholine) receptors (M1Rs), we recently measured time courses of intermediate steps in the signaling cascade using Förster resonance energy transfer (FRET). The expression of FRET probes changes the density of signaling molecules. To provide a full quantitative description of M1R signaling that includes a simulation of kinetics in native (tsA201) cells, we now determine the density of FRET probes and construct a kinetic model of M1R signaling through Gq to activation of phospholipase C (PLC). Downstream effects on the trace membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and PIP2-dependent KCNQ2/3 current are considered in our companion paper in this issue (Falkenburger et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910345). By calibrating their fluorescence intensity, we found that we selected transfected cells for our experiments with âŒ3,000 fluorescently labeled receptors, G proteins, or PLC molecules per ”m2 of plasma membrane. Endogenous levels are much lower, 1â40 per ”m2. Our kinetic model reproduces the time courses and concentrationâresponse relationships measured by FRET and explains observed delays. It predicts affinities and rate constants that align well with literature values. In native tsA201 cells, much of the delay between ligand binding and PLC activation reflects slow binding of G proteins to receptors. With M1R and GÎČ FRET probes overexpressed, 10% of receptors have G proteins bound at rest, rising to 73% in the presence of agonist. In agreement with previous work, the model suggests that binding of PLC to Gαq greatly speeds up NX and GTPase activity, and that PLC is maintained in the active state by cycles of rapid GTP hydrolysis and NX on Gαq subunits bound to PLC
- âŠ