39 research outputs found
Implementation of a Direct-Imaging and FX Correlator for the BEST-2 Array
A new digital backend has been developed for the BEST-2 array at
Radiotelescopi di Medicina, INAF-IRA, Italy which allows concurrent operation
of an FX correlator, and a direct-imaging correlator and beamformer. This
backend serves as a platform for testing some of the spatial Fourier transform
concepts which have been proposed for use in computing correlations on
regularly gridded arrays. While spatial Fourier transform-based beamformers
have been implemented previously, this is to our knowledge, the first time a
direct-imaging correlator has been deployed on a radio astronomy array.
Concurrent observations with the FX and direct-imaging correlator allows for
direct comparison between the two architectures. Additionally, we show the
potential of the direct-imaging correlator for time-domain astronomy, by
passing a subset of beams though a pulsar and transient detection pipeline.
These results provide a timely verification for spatial Fourier transform-based
instruments that are currently in commissioning. These instruments aim to
detect highly-redshifted hydrogen from the Epoch of Reionization and/or to
perform widefield surveys for time-domain studies of the radio sky. We
experimentally show the direct-imaging correlator architecture to be a viable
solution for correlation and beamforming.Comment: 12 pages, 17 figures, 2 tables, Accepted to MNRAS January 24, 2014,
includes appendix diagram
Operational Angular Track Reconstruction in Space Surveillance Radars through an Adaptive Beamforming Approach
In the last few years, many space surveillance initiatives have started to consider the problem represented by resident space object overpopulation. In particular, the European Space Surveillance and Tracking (EUSST) consortium is in charge of providing services like collision avoidance, fragmentation analysis, and re-entry, which rely on measurements obtained through ground-based sensors. BIRALES is an Italian survey radar belonging to the EUSST framework and is capable of providing measurements including Doppler shift, slant range, and angular profile. In recent years, the Music Approach for Track Estimate and Refinement (MATER) algorithm has been developed to retrieve angular tracks through an adaptive beamforming technique, guaranteeing the generation of more accurate and robust measurements with respect to the previous static beamforming approach. This work presents the design of a new data processing chain to be used by BIRALES to compute the angular track. The signal acquired by the BIRALES receiver array is down-converted and the receiver bandwidth is split into multiple channels, in order to maximize the signal-to-noise ratio of the measurements. Then, the signal passes through a detection block, where an isolation procedure creates, for each epoch, signal correlation matrices (CMs) related to the channels involved in the detection and then processes them to isolate the data stream related to a single detected source. Consequently, for each epoch and for each detected source, just the CM featuring the largest signal contribution is kept, allowing deriving the Doppler shift measurement from the channel illumination sequence. The MATER algorithm is applied to each CM stream, first estimating the signal directions of arrival, then grouping them in the observation time window, and eventually returning the target angular track. Ambiguous estimates may be present due to the configuration of the receiver array, which cause spatial aliasing phenomena. This problem can be addressed by either exploiting transit prediction (in the case of cataloged objects), or by applying tailored criteria (for uncatalogued objects). The performance of the new architecture was assessed in real operational scenarios, demonstrating the enhancement represented by the implementation of the channelization strategy, as well as the angular measurement accuracy returned by MATER, in both nominal and off-nominal scenarios
A GPU-based survey for millisecond radio transients using ARTEMIS
Astrophysical radio transients are excellent probes of extreme physical
processes originating from compact sources within our Galaxy and beyond. Radio
frequency signals emitted from these objects provide a means to study the
intervening medium through which they travel. Next generation radio telescopes
are designed to explore the vast unexplored parameter space of high time
resolution astronomy, but require High Performance Computing (HPC) solutions to
process the enormous volumes of data that are produced by these telescopes. We
have developed a combined software /hardware solution (code named ARTEMIS) for
real-time searches for millisecond radio transients, which uses GPU technology
to remove interstellar dispersion and detect millisecond radio bursts from
astronomical sources in real-time. Here we present an introduction to ARTEMIS.
We give a brief overview of the software pipeline, then focus specifically on
the intricacies of performing incoherent de-dispersion. We present results from
two brute-force algorithms. The first is a GPU based algorithm, designed to
exploit the L1 cache of the NVIDIA Fermi GPU. Our second algorithm is CPU based
and exploits the new AVX units in Intel Sandy Bridge CPUs.Comment: 4 pages, 7 figures. To appear in the proceedings of ADASS XXI, ed.
P.Ballester and D.Egret, ASP Conf. Se
The Northern Cross fast radio burst project–I: overview and pilot observations at 408 MHz
Fast radio bursts (FRBs) remain one of the most enigmatic astrophysical sources. Observations have significantly progressed over the last few years, due to the capabilities of new radio telescopes and the refurbishment of existing ones. Here, we describe the upgrade of the Northern Cross radio telescope, operating in the 400–416 MHz frequency band, with the ultimate goal of turning the array into a dedicated instrument to survey the sky for FRBs
SKA-low prototypes deployed in Australia : synoptic of the UAV-based experimental results
As the Square Kilometre Array
progresses toward the construction phase, the first
prototypes of the low-frequency instrument were
deployed in Australia. To support such a crucial phase,
a measurement campaign took place in the Murchison
Radio-astronomy Observatory area to validate the
electromagnetic models of the arrays by characterizing
the embedded element patterns and the array beams.
This article shows the significant campaign results in a
comprehensive and readable way. Such a synoptic
visualization allows for a direct evaluation of the
complete dataset.peer-reviewe
Large Horizontal Near-field Scanner based on a Non-tethered Unmanned Aerial Vehicle
A horizontal planar scanner with an approximate size of 40 m x 40 m has been implemented using the Unmanned Aerial Vehicle (UAV) technology. The UAV is not wired to the ground to maintain the flexibility and short setup time of a non-tethered flight. In this configuration, the UAV-mounted continuous-wave source is not phase-locked to the on-the-ground receiver. A dual-polarized reference antenna placed on the ground is hence used to retrieve the relevant phase information. The presented approach has been applied on the Pre - Aperture Array Verification System (Pre -AAVS1) of the Square Kilometre Array, which is a digital beamformed array with 16 active elements. An inverse source technique has been applied on measured Near-Field (NF) data acquired on two different sets of points (one for each electric field component) from all the receiver channels. In this way, Embedded Element Patterns (EEPs), array calibration coefficients and pattern have been determined from NF data only. The achieved results have been validated using a complementary set of Far-Field (FF) measurements and simulations
Mapping our Universe in 3D with MITEoR
Mapping our universe in 3D by imaging the redshifted 21 cm line from neutral
hydrogen has the potential to overtake the cosmic microwave background as our
most powerful cosmological probe, because it can map a much larger volume of
our Universe, shedding new light on the epoch of reionization, inflation, dark
matter, dark energy, and neutrino masses. We report on MITEoR, a pathfinder
low-frequency radio interferometer whose goal is to test technologies that
greatly reduce the cost of such 3D mapping for a given sensitivity. MITEoR
accomplishes this by using massive baseline redundancy both to enable automated
precision calibration and to cut the correlator cost scaling from N^2 to NlogN,
where N is the number of antennas. The success of MITEoR with its 64
dual-polarization elements bodes well for the more ambitious HERA project,
which would incorporate many identical or similar technologies using an order
of magnitude more antennas, each with dramatically larger collecting area.Comment: To be published in proceedings of 2013 IEEE International Symposium
on Phased Array Systems & Technolog