117 research outputs found

    Impact of local stacking on the graphene-impurity interaction: theory and experiments

    Full text link
    We investigate the graphene-impurity interaction problem by combining experimental - scanning tunneling microscopy (STM) and spectroscopy (STS) - and theoretical - Anderson impurity model and density functional theory (DFT) calculations - techniques. We use graphene on the SiC(000-1)(2x2)_C reconstruction as a model system. The SiC substrate reconstruction is based on silicon adatoms. Graphene mainly interacts with the dangling bonds of these adatoms which act as impurities. Graphene grown on SiC(000-1)(2x2)_C shows domains with various orientations relative to the substrate so that very different local graphene/Si adatom stacking configurations can be probed on a given grain. The position and width of the adatom (impurity) state can be analyzed by STM/STS and related to its local environment owing to the high bias electronic transparency of graphene. The experimental results are compared to Anderson's model predictions and complemented by DFT calculations for some specific local environments. We conclude that the adatom resonance shows a smaller width and a larger shift toward the Dirac point for an adatom at the center of a graphene hexagon than for an adatom just on top of a C graphene atom.Comment: 13 pages, 6 figures, Accepted for publication in Phys. Rev.

    Graphene on the C-terminated SiC (000 1ˉ\bar{1}) surface: An ab initio study

    Full text link
    The atomic and electronic structures of a graphene layer on top of the (2×2)(2\times2) reconstruction of the SiC (0001ˉ\bar{1}) surface are studied from ab initio calculations. At variance with the (0001) face, no C bufferlayer is found here. Si adatoms passivate the substrate surface so that the very first C layer presents a linear dispersion characteristic of graphene. A small graphene-substrate interaction remains in agreement with scanning tunneling experiments (F.Hiebel et al. {\it Phys. Rev. B} {\bf 78} 153412 (2008)). The stacking geometry has little influence on the interaction which explains the rotational disorder observed on this face.Comment: 4 pages, 3 figures, additional materia

    Electron states of mono- and bilayer graphene on SiC probed by STM

    Full text link
    We present a scanning tunneling microscopy (STM) study of a gently-graphitized 6H-SiC(0001) surface in ultra high vacuum. From an analysis of atomic scale images, we identify two different kinds of terraces, which we unambiguously attribute to mono- and bilayer graphene capping a C-rich interface. At low temperature, both terraces show (3×3)(\sqrt{3}\times \sqrt{3}) quantum interferences generated by static impurities. Such interferences are a fingerprint of π\pi-like states close to the Fermi level. We conclude that the metallic states of the first graphene layer are almost unperturbed by the underlying interface, in agreement with recent photoemission experiments (A. Bostwick et al., Nature Physics 3, 36 (2007))Comment: 4 pages, 3 figures submitte

    Quasiparticle Chirality in Epitaxial Graphene Probed at the Nanometer Scale

    Get PDF
    Graphene exhibits unconventional two-dimensional electronic properties resulting from the symmetry of its quasiparticles, which leads to the concepts of pseudospin and electronic chirality. Here we report that scanning tunneling microscopy can be used to probe these unique symmetry properties at the nanometer scale. They are reflected in the quantum interference pattern resulting from elastic scattering off impurities, and they can be directly read from its fast Fourier transform. Our data, complemented by theoretical calculations, demonstrate that the pseudospin and the electronic chirality in epitaxial graphene on SiC(0001) correspond to the ones predicted for ideal graphene.Comment: 4 pages, 3 figures, minor change

    Few layers graphene on 6H-SiC(000-1): an STM study

    Full text link
    We have analyzed by Scanning Tunnelling Microscopy (STM) thin films made of few (3-5) graphene layers grown on the C terminated face of 6H-SiC in order to identify the nature of the azimuthal disorder reported in this material. We observe superstructures which are interpreted as Moir\'e patterns due to a misorientation angle between consecutive layers. The presence of stacking faults is expected to lead to electronic properties reminiscent of single layer graphene even for multilayer samples. Our results indicate that this apparent electronic decoupling of the layers can show up in STM data.Comment: 20 page

    Electronic structure of epitaxial graphene layers on SiC: effect of the substrate

    Full text link
    Recent transport measurements on thin graphite films grown on SiC show large coherence lengths and anomalous integer quantum Hall effects expected for isolated graphene sheets. This is the case eventhough the layer-substrate epitaxy of these films implies a strong interface bond that should induce perturbations in the graphene electronic structure. Our DFT calculations confirm this strong substrate-graphite bond in the first adsorbed carbon layer that prevents any graphitic electronic properties for this layer. However, the graphitic nature of the film is recovered by the second and third absorbed layers. This effect is seen in both the (0001)and (0001ˉ)(000\bar{1}) 4H SiC surfaces. We also present evidence of a charge transfer that depends on the interface geometry. It causes the graphene to be doped and gives rise to a gap opening at the Dirac point after 3 carbon layers are deposited in agreement with recent ARPES experiments (T.Ohta et al, Science {\bf 313} (2006) 951)

    Early stage formation of graphene on the C-face of 6H-SiC

    Full text link
    An investigation of the early stage formation of graphene on the C-face of 6H-SiC is presented. We show that the sublimation of few atomic layers of Si out of the SiC substrate is not homogeneous. In good agreement with the results of theoretical calculations it starts from defective sites, mainly dislocations that define nearly circular flakes, which have a pyramidal, volcano-like, shape with a center chimney where the original defect was located. At higher temperatures, complete conversion occurs but, again, it is not homogeneous. Within the sample surface the intensity of the Raman G and 2D bands, evidences non-homogeneous thickness.Comment: 12 pages, 3 figure

    Unraveling the intrinsic and robust nature of van hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis

    Full text link
    Extensive scanning tunneling microscopy and spectroscopy experiments complemented by first-principles and parametrized tight binding calculations provide a clear answer to the existence, origin, and robustness of vanHove singularities (vHs) in twisted graphene layers. Our results are conclusive: vHs due to interlayer coupling are ubiquitously present in a broad range (from 1º to 10º) of rotation angles in our graphene on 6H-SiC(000-1) samples. From the variation of the energy separation of the vHs with the rotation angle we are able to recover the Fermi velocity of a graphene monolayer as well as the strength of the interlayer interaction. The robustness of the vHs is assessed both by experiments, which show that they survive in the presence of a third graphene layer, and by calculations, which test the role of the periodic modulation and absolute value of the interlayer distance. Finally, we clarify the role of the layer topographic corrugation and of electronic effects in the apparent moiré contrast measured on the STM imagesThis work was supported by Spain’s MICINN under Grants No. MAT2010-14902, No. CSD2010-00024, and No. CSD2007-00050, and by Comunidad de Madrid under Grant No. S2009/MAT-1467. M. M. U., I. B., P. M, J.-Y.V., L. M., and J. M. G.-R. also acknowledge the PHC Picasso program for financial support (Project No. 22885NH). I. B. was supported by a Ramón y Cajal project of the Spanish MEC. L. M., P. M., and J.-Y.V. acknowledge support from Fondation Nanosciences (Dispograph project
    • …
    corecore