37 research outputs found

    Using mechanical homogenization to isolate microglia from mouse brain tissue to preserve transcriptomic integrity

    Get PDF
    Numerous approaches have been developed to isolate microglia from the brain, but procedures using enzymatic dissociation at 37°C can introduce drastic transcriptomic changes and confound results from gene expression assays. Here, we present an optimized protocol for microglia isolation using mechanical homogenization. We use Dounce homogenization to homogenize mouse brain tissue into single-cell suspension. We then isolate microglia through Percoll gradient and flow cytometry. Isolated microglia exhibit a gene expression pattern without the changes induced by heated enzymatic digestion. For complete details on the use and execution of this protocol, please refer to Clayton et al. (2021). © 2022 The Author(s

    The microbiota restrains neurodegenerative microglia in a model of amyotrophic lateral sclerosis

    Get PDF
    Background: The gut microbiota can affect neurologic disease by shaping microglia, the primary immune cell in the central nervous system (CNS). While antibiotics improve models of Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and the C9orf72 model of amyotrophic lateral sclerosis (ALS), antibiotics worsen disease progression the in SOD1G93A model of ALS. In ALS, microglia transition from a homeostatic to a neurodegenerative (MGnD) phenotype and contribute to disease pathogenesis, but whether this switch can be affected by the microbiota has not been investigated. Results: In this short report, we found that a low-dose antibiotic treatment worsened motor function and decreased survival in the SOD1 mice, which is consistent with studies using high-dose antibiotics. We also found that co-housing SOD1 mice with wildtype mice had no effect on disease progression. We investigated changes in the microbiome and found that antibiotics reduced Akkermansia and butyrate-producing bacteria, which may be beneficial in ALS, and cohousing had little effect on the microbiome. To investigate changes in CNS resident immune cells, we sorted spinal cord microglia and found that antibiotics downregulated homeostatic genes and increased neurodegenerative disease genes in SOD1 mice. Furthermore, antibiotic-induced changes in microglia preceded changes in motor function, suggesting that this may be contributing to disease progression. Conclusions: Our findings suggest that the microbiota play a protective role in the SOD1 model of ALS by restraining MGnD microglia, which is opposite to other neurologic disease models, and sheds new light on the importance of disease-specific interactions between microbiota and microglia. [MediaObject not available: see fulltext.] © 2022, The Author(s)

    The Seroepidemiology of Haemophilus influenzae Type B Prior to Introduction of an Immunization Programme in Kathmandu, Nepal.

    Get PDF
    Haemophilus influenzae type b (Hib) is now recognized as an important pathogen in Asia. To evaluate disease susceptibility, and as a marker of Hib transmission before routine immunization was introduced in Kathmandu, 71 participants aged 7 months-77 years were recruited and 15 cord blood samples were collected for analysis of anti-polyribosylribitol phosphate antibody levels by enzyme-linked immunosorbent assay. Only 20% of children under 5 years old had levels considered protective (>0.15 µg/ml), rising to 83% of 15-54 year-olds. Prior to introduction of Hib vaccine in Kathmandu, the majority of young children were susceptible to disease

    Inhibition of colony stimulating factor 1 receptor corrects maternal inflammation-induced microglial and synaptic dysfunction and behavioral abnormalities

    Get PDF
    Abstract Maternal immune activation (MIA) disrupts the central innate immune system during a critical neurodevelopmental period. Microglia are primary innate immune cells in the brain although their direct influence on the MIA phenotype is largely unknown. Here we show that MIA alters microglial gene expression with upregulation of cellular protrusion/neuritogenic pathways, concurrently causing repetitive behavior, social deficits, and synaptic dysfunction to layer V intrinsically bursting pyramidal neurons in the prefrontal cortex of mice. MIA increases plastic dendritic spines of the intrinsically bursting neurons and their interaction with hyper-ramified microglia. Treating MIA offspring by colony stimulating factor 1 receptor inhibitors induces depletion and repopulation of microglia, and corrects protein expression of the newly identified MIA-associated neuritogenic molecules in microglia, which coalesces with correction of MIA-associated synaptic, neurophysiological, and behavioral abnormalities. Our study demonstrates that maternal immune insults perturb microglial phenotypes and influence neuronal functions throughout adulthood, and reveals a potent effect of colony stimulating factor 1 receptor inhibitors on the correction of MIA-associated microglial, synaptic, and neurobehavioral dysfunctions

    Essential omega-3 fatty acids tune microglial phagocytosis of synaptic elements in the mouse developing brain

    Get PDF
    AbstractOmega-3 fatty acids (n-3 PUFAs) are essential for the functional maturation of the brain. Westernization of dietary habits in both developed and developing countries is accompanied by a progressive reduction in dietary intake of n-3 PUFAs. Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental diseases in Humans. However, the n-3 PUFAs deficiency-mediated mechanisms affecting the development of the central nervous system are poorly understood. Active microglial engulfment of synapses regulates brain development. Impaired synaptic pruning is associated with several neurodevelopmental disorders. Here, we identify a molecular mechanism for detrimental effects of low maternal n-3 PUFA intake on hippocampal development in mice. Our results show that maternal dietary n-3 PUFA deficiency increases microglia-mediated phagocytosis of synaptic elements in the rodent developing hippocampus, partly through the activation of 12/15-lipoxygenase (LOX)/12-HETE signaling, altering neuronal morphology and affecting cognitive performance of the offspring. These findings provide a mechanistic insight into neurodevelopmental defects caused by maternal n-3 PUFAs dietary deficiency.Infrastructure de Recherche Translationnelle pour les Biothérapies en NeurosciencesProgram Initiative d’Excellenc

    Morphofunctional plasticity of brain innate immune system : modulation by inflammation and nutrition

    No full text
    Le système de l’immunité innée cérébrale (SIIC) est principalement composé des cellules microgliales. En réponse à des stimuli immuns, inflammatoires ou un trauma neurologique, la microglie s’active et produit des facteurs pro et anti-inflammatoires qui d’une part coordonnent la réponse de l’immunité innée cérébrale et d’autre part modulent l’activité neuronale et, in fine, le comportement. Plus récemment, les cellules microgliales se sont révélées jouer un rôle clé dans le développement cérébral. Ainsi, par leurs activités de phagocytose, elles participent à la maturation des réseaux neuronaux. Si l’activation du SIIC permet de défendre le tissu cérébral des agressions, l’activation prolongée des cellules microgliales a aussi des effets délétères. Ainsi, dans le cerveau adulte, la production soutenue de cytokines inflammatoires contribue au développement de pathologies neurodégénératives. Au cours du développement les stimuli inflammatoires, en perturbant l’activité des cellules microgliales conduisent à une dysfonction de circuits neuronaux qui pourrait être impliquée dans des pathologies neuropsychiatriques à composante neurodéveloppementale. La compréhension de la régulation des cellules microgliales et de leur réponse est donc capitale. L’activité microgliale repose sur ses propriétés morphologique, dynamique et sa communication avec les neurones qui impliquent des profils de synthèse de facteurs (cytokines, chemokines, facteurs de croissance, etc..) et de récepteurs particuliers, la polarisation vers un phénotype pro ou anti-inflammatoire et la phagocytose. Peu d’études ont caractérisé l’ensemble des propriétés morphofonctionnelles des cellules microgliales in vivo. Par la combinaison d’approches de FACS, immunohistochimie, microscopie confocale et reconstruction en 3D, microscopie bi-photonique et dosage des facteurs de communication, il est aujourd’hui possible de mieux caractériser ces cellules afin de comprendre leur régulation par l’environnement et l’impact (bénéfique ou délétère) sur les fonctions neuronales. L’objectif général de cette thèse a été d’étudier les propriétés morphofonctionnelles des cellules microgliales in vivo dans deux situations physiopathologiques, une inflammation induite par l’administration périphérique de lipopolysaccharide (LPS) et une déficience alimentaire en acides gras polyinsaturés (AGPI) de type n-3, connus pour leurs propriétés immunomodulatrices. La première étude nous a permis de développer des outils nécessaires à l’étude de la plasticité morphofonctionnelle de la microglie et d’apporter de nouveaux éléments de compréhension de l’impact d’une inflammation périphérique sur l’activité de ces cellules in vivo. Dans la deuxième partie de cette thèse, nous avons montré pour la première fois que le statut alimentaire maternel en AGPI n-3 influence les propriétés morphofonctionnelles des cellules microgliales au cours du développement post-natal ainsi que l’activité des réseaux neuronaux. De façon générale, nos résultats apportent des éléments de compréhension des relations entre plasticité morphologique et fonctionnelle des cellules microgliales in vivo.The brain innate immune system is mainly composed of microglial cells. Microglia are activated in response to an immune or inflammatory stimuli or a trauma, and then produce pro- and anti-inflammatory factors. These factors drive the innate immune response and can modulate neuronal activity and in fine, learning and memory. Recently, microglia have been shown to play a key role during brain development. Via their phagocytic activity, microglial cells can participate to neuronal networks maturation. Although brain innate immune system defends brain tissue from aggression, chronic activation of microglia can also be deleterious. In the adult brain, chronic production of inflammatory cytokines can contribute to the pathogenesis of neurodegenerative diseases. During development, inflammatory stimuli modifying microglia activity and homeostasis could lead to neuropsychiatric diseases with a neurodevelopmental origin. Understanding how microglia are regulated and how they respond to various stimuli is therefore crucial.Microglia activity is characterized by morphological and dynamic properties of microglia,by its communication with neurons by its polarization into a specific phenotype, and by their phagocytic profile. Few studies have characterized all the morphofunctional properties of microglial cells in vivo. Using a combination of approaches including FACS, immunohistochemistry, confocal microscopy, 3D reconstruction, two-photon microscopy and communication factors assays, it is now possible to better characterize these cells in order to understand their regulation by the environment and the resulting impact (beneficial or deleterious) on neuronal functions. The main goal of this thesis was to study the morphofunctional properties of microglial cells in vivo in two pathophysiological states: a peripheral inflammation induced by a peripheral injection of lipopolysaccharide (LPS) and in an n-3 PUFAs nutritional state. In the first study, we developed tools to investigate microglial morphofunctional plasticity and gained a better understanding of the impact of peripheral inflammation on the activity of these cells in vivo. In the second part of this thesis, we showed for the first time that maternal nutritional status in n-3 PUFAs affect the morphofunctional properties of microglial cells and the establishment of neural circuits during the postnatal development of the pups. Overall, our results provide new insights in the relationship between morphological and functional plasticity of microglial cells in vivo

    Morphofunctional plasticity of brain innate immune system : modulation by inflammation and nutrition

    No full text
    Le système de l’immunité innée cérébrale (SIIC) est principalement composé des cellules microgliales. En réponse à des stimuli immuns, inflammatoires ou un trauma neurologique, la microglie s’active et produit des facteurs pro et anti-inflammatoires qui d’une part coordonnent la réponse de l’immunité innée cérébrale et d’autre part modulent l’activité neuronale et, in fine, le comportement. Plus récemment, les cellules microgliales se sont révélées jouer un rôle clé dans le développement cérébral. Ainsi, par leurs activités de phagocytose, elles participent à la maturation des réseaux neuronaux. Si l’activation du SIIC permet de défendre le tissu cérébral des agressions, l’activation prolongée des cellules microgliales a aussi des effets délétères. Ainsi, dans le cerveau adulte, la production soutenue de cytokines inflammatoires contribue au développement de pathologies neurodégénératives. Au cours du développement les stimuli inflammatoires, en perturbant l’activité des cellules microgliales conduisent à une dysfonction de circuits neuronaux qui pourrait être impliquée dans des pathologies neuropsychiatriques à composante neurodéveloppementale. La compréhension de la régulation des cellules microgliales et de leur réponse est donc capitale. L’activité microgliale repose sur ses propriétés morphologique, dynamique et sa communication avec les neurones qui impliquent des profils de synthèse de facteurs (cytokines, chemokines, facteurs de croissance, etc..) et de récepteurs particuliers, la polarisation vers un phénotype pro ou anti-inflammatoire et la phagocytose. Peu d’études ont caractérisé l’ensemble des propriétés morphofonctionnelles des cellules microgliales in vivo. Par la combinaison d’approches de FACS, immunohistochimie, microscopie confocale et reconstruction en 3D, microscopie bi-photonique et dosage des facteurs de communication, il est aujourd’hui possible de mieux caractériser ces cellules afin de comprendre leur régulation par l’environnement et l’impact (bénéfique ou délétère) sur les fonctions neuronales. L’objectif général de cette thèse a été d’étudier les propriétés morphofonctionnelles des cellules microgliales in vivo dans deux situations physiopathologiques, une inflammation induite par l’administration périphérique de lipopolysaccharide (LPS) et une déficience alimentaire en acides gras polyinsaturés (AGPI) de type n-3, connus pour leurs propriétés immunomodulatrices. La première étude nous a permis de développer des outils nécessaires à l’étude de la plasticité morphofonctionnelle de la microglie et d’apporter de nouveaux éléments de compréhension de l’impact d’une inflammation périphérique sur l’activité de ces cellules in vivo. Dans la deuxième partie de cette thèse, nous avons montré pour la première fois que le statut alimentaire maternel en AGPI n-3 influence les propriétés morphofonctionnelles des cellules microgliales au cours du développement post-natal ainsi que l’activité des réseaux neuronaux. De façon générale, nos résultats apportent des éléments de compréhension des relations entre plasticité morphologique et fonctionnelle des cellules microgliales in vivo.The brain innate immune system is mainly composed of microglial cells. Microglia are activated in response to an immune or inflammatory stimuli or a trauma, and then produce pro- and anti-inflammatory factors. These factors drive the innate immune response and can modulate neuronal activity and in fine, learning and memory. Recently, microglia have been shown to play a key role during brain development. Via their phagocytic activity, microglial cells can participate to neuronal networks maturation. Although brain innate immune system defends brain tissue from aggression, chronic activation of microglia can also be deleterious. In the adult brain, chronic production of inflammatory cytokines can contribute to the pathogenesis of neurodegenerative diseases. During development, inflammatory stimuli modifying microglia activity and homeostasis could lead to neuropsychiatric diseases with a neurodevelopmental origin. Understanding how microglia are regulated and how they respond to various stimuli is therefore crucial.Microglia activity is characterized by morphological and dynamic properties of microglia,by its communication with neurons by its polarization into a specific phenotype, and by their phagocytic profile. Few studies have characterized all the morphofunctional properties of microglial cells in vivo. Using a combination of approaches including FACS, immunohistochemistry, confocal microscopy, 3D reconstruction, two-photon microscopy and communication factors assays, it is now possible to better characterize these cells in order to understand their regulation by the environment and the resulting impact (beneficial or deleterious) on neuronal functions. The main goal of this thesis was to study the morphofunctional properties of microglial cells in vivo in two pathophysiological states: a peripheral inflammation induced by a peripheral injection of lipopolysaccharide (LPS) and in an n-3 PUFAs nutritional state. In the first study, we developed tools to investigate microglial morphofunctional plasticity and gained a better understanding of the impact of peripheral inflammation on the activity of these cells in vivo. In the second part of this thesis, we showed for the first time that maternal nutritional status in n-3 PUFAs affect the morphofunctional properties of microglial cells and the establishment of neural circuits during the postnatal development of the pups. Overall, our results provide new insights in the relationship between morphological and functional plasticity of microglial cells in vivo

    Plasticité morphofonctionnelle du système de l’immunité innée cérébrale : modulation par l’inflammation et la nutrition

    No full text
    The brain innate immune system is mainly composed of microglial cells. Microglia are activated in response to an immune or inflammatory stimuli or a trauma, and then produce pro- and anti-inflammatory factors. These factors drive the innate immune response and can modulate neuronal activity and in fine, learning and memory. Recently, microglia have been shown to play a key role during brain development. Via their phagocytic activity, microglial cells can participate to neuronal networks maturation. Although brain innate immune system defends brain tissue from aggression, chronic activation of microglia can also be deleterious. In the adult brain, chronic production of inflammatory cytokines can contribute to the pathogenesis of neurodegenerative diseases. During development, inflammatory stimuli modifying microglia activity and homeostasis could lead to neuropsychiatric diseases with a neurodevelopmental origin. Understanding how microglia are regulated and how they respond to various stimuli is therefore crucial.Microglia activity is characterized by morphological and dynamic properties of microglia,by its communication with neurons by its polarization into a specific phenotype, and by their phagocytic profile. Few studies have characterized all the morphofunctional properties of microglial cells in vivo. Using a combination of approaches including FACS, immunohistochemistry, confocal microscopy, 3D reconstruction, two-photon microscopy and communication factors assays, it is now possible to better characterize these cells in order to understand their regulation by the environment and the resulting impact (beneficial or deleterious) on neuronal functions. The main goal of this thesis was to study the morphofunctional properties of microglial cells in vivo in two pathophysiological states: a peripheral inflammation induced by a peripheral injection of lipopolysaccharide (LPS) and in an n-3 PUFAs nutritional state. In the first study, we developed tools to investigate microglial morphofunctional plasticity and gained a better understanding of the impact of peripheral inflammation on the activity of these cells in vivo. In the second part of this thesis, we showed for the first time that maternal nutritional status in n-3 PUFAs affect the morphofunctional properties of microglial cells and the establishment of neural circuits during the postnatal development of the pups. Overall, our results provide new insights in the relationship between morphological and functional plasticity of microglial cells in vivo.Le système de l’immunité innée cérébrale (SIIC) est principalement composé des cellules microgliales. En réponse à des stimuli immuns, inflammatoires ou un trauma neurologique, la microglie s’active et produit des facteurs pro et anti-inflammatoires qui d’une part coordonnent la réponse de l’immunité innée cérébrale et d’autre part modulent l’activité neuronale et, in fine, le comportement. Plus récemment, les cellules microgliales se sont révélées jouer un rôle clé dans le développement cérébral. Ainsi, par leurs activités de phagocytose, elles participent à la maturation des réseaux neuronaux. Si l’activation du SIIC permet de défendre le tissu cérébral des agressions, l’activation prolongée des cellules microgliales a aussi des effets délétères. Ainsi, dans le cerveau adulte, la production soutenue de cytokines inflammatoires contribue au développement de pathologies neurodégénératives. Au cours du développement les stimuli inflammatoires, en perturbant l’activité des cellules microgliales conduisent à une dysfonction de circuits neuronaux qui pourrait être impliquée dans des pathologies neuropsychiatriques à composante neurodéveloppementale. La compréhension de la régulation des cellules microgliales et de leur réponse est donc capitale. L’activité microgliale repose sur ses propriétés morphologique, dynamique et sa communication avec les neurones qui impliquent des profils de synthèse de facteurs (cytokines, chemokines, facteurs de croissance, etc..) et de récepteurs particuliers, la polarisation vers un phénotype pro ou anti-inflammatoire et la phagocytose. Peu d’études ont caractérisé l’ensemble des propriétés morphofonctionnelles des cellules microgliales in vivo. Par la combinaison d’approches de FACS, immunohistochimie, microscopie confocale et reconstruction en 3D, microscopie bi-photonique et dosage des facteurs de communication, il est aujourd’hui possible de mieux caractériser ces cellules afin de comprendre leur régulation par l’environnement et l’impact (bénéfique ou délétère) sur les fonctions neuronales. L’objectif général de cette thèse a été d’étudier les propriétés morphofonctionnelles des cellules microgliales in vivo dans deux situations physiopathologiques, une inflammation induite par l’administration périphérique de lipopolysaccharide (LPS) et une déficience alimentaire en acides gras polyinsaturés (AGPI) de type n-3, connus pour leurs propriétés immunomodulatrices. La première étude nous a permis de développer des outils nécessaires à l’étude de la plasticité morphofonctionnelle de la microglie et d’apporter de nouveaux éléments de compréhension de l’impact d’une inflammation périphérique sur l’activité de ces cellules in vivo. Dans la deuxième partie de cette thèse, nous avons montré pour la première fois que le statut alimentaire maternel en AGPI n-3 influence les propriétés morphofonctionnelles des cellules microgliales au cours du développement post-natal ainsi que l’activité des réseaux neuronaux. De façon générale, nos résultats apportent des éléments de compréhension des relations entre plasticité morphologique et fonctionnelle des cellules microgliales in vivo

    TREMendous 2 Be Social

    No full text
    International audienc
    corecore