22 research outputs found

    Effect of 12 months of testosterone replacement therapy on metabolic syndrome components in hypogonadal men: data from the Testim Registry in the US (TRiUS)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent evidence suggests that there may be a bidirectional, physiological link between hypogonadism and metabolic syndrome (MetS), and testosterone replacement therapy (TRT) has been shown to improve some symptoms of MetS in small patient populations. We examined the effect of 12 months of TRT on MetS components in a large cohort of hypogonadal men.</p> <p>Methods</p> <p>Data were obtained from TRiUS (Testim<sup>® </sup>Registry in the United States), a 12-month, multicenter, prospective observational registry (N = 849) of hypogonadal men prescribed Testim 1% testosterone gel (5-10 g/day). Data analyzed included age, total testosterone (TT), free testosterone (FT), sex hormone-binding globulin (SHBG), and MetS components: waist circumference, blood pressure, fasting blood glucose, plasma triglycerides, and HDL cholesterol.</p> <p>Results</p> <p>Of evaluable patients (581/849) at baseline, 37% were MetS+ (n = 213) and 63% were MetS- (n = 368). MetS+ patients had significantly lower TT (p < 0.0001) and SHBG (p = 0.01) levels. Patients with the lowest quartile TT levels (<206 ng/dL [<7.1 nmol/L]) had a significantly increased risk of MetS+ classification vs those with highest quartile TT levels (≥331 ng/dL [≥11.5 nmol/L]) (odds ratio 2.66; 95% CI, 1.60 to 4.43). After 12 months of TRT, TT levels significantly increased in all patients (p < 0.005). Despite having similar TT levels after TRT, only MetS+ patients demonstrated significant decreases in waist circumference, fasting blood glucose levels, and blood pressure; lowest TT quartile patients demonstrated significant decreases in waist circumference and fasting blood glucose. Neither HDL cholesterol nor triglyceride levels changed significantly in either patient population.</p> <p>Conclusion</p> <p>Hypogonadal MetS+ patients were more likely than their MetS- counterparts to have lower baseline TT levels and present with more comorbid conditions. MetS+ patients and those in the lowest TT quartile showed improvement in some metabolic syndrome components after 12 months of TRT. While it is currently unclear if further cardiometabolic benefit can be seen with longer TRT use in this population, testing for low testosterone may be warranted in MetS+ men with hypogonadal symptoms.</p

    Mutations in fibroblast growth factor receptor 1 cause both Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism

    No full text
    Mutations in KAL1 and FGFR1 cause Kallmann syndrome (KS), whereas mutations in the GNRHR and GPR54 genes cause idiopathic hypogonadotropic hypogonadism with normal olfaction (nIHH). Mixed pedigrees containing both KS and nIHH have also been described; however, the genetic cause of these rare cases is unknown. We examined the FGFR1 gene in seven nIHH subjects who either belonged to a mixed pedigree (n = 5) or who had associated midline defects (n = 2). Heterozygous FGFR1 mutations were found in three of seven unrelated nIHH probands with normal MRI of the olfactory system: (i) G237S in an nIHH female and a KS brother; (ii) (P722H and N724K) in an nIHH male missing two teeth and his mother with isolated hyposmia; and (iii) Q680X in a nIHH male with cleft lip/palate and missing teeth, his brother with nIHH, and his father with delayed puberty. We show that these mutations lead to receptor loss-of-function. The Q680X leads to an inactive FGFR1, which lacks a major portion of the tyrosine kinase domain (TKD). The G237S mutation inhibits proper folding of D2 of the FGFR1 and likely leads to the loss of cell-surface expression of FGFR1. In contrast, the (P722H and N724K) double mutation causes structural perturbations in TKD, reducing the catalytic activity of TKD. We conclude that loss-of-function mutations in FGFR1 cause nIHH with normal MRI of the olfactory system. These mutations also account for some of the mixed pedigrees, thus challenging the current idea that KS and nIHH are distinct entities

    Obesity, body composition, and prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Established risk factors for prostate cancer have not translated to effective prevention or adjuvant care strategies. Several epidemiologic studies suggest greater body adiposity may be a modifiable risk factor for high-grade (Gleason 7, Gleason 8-10) prostate cancer and prostate cancer mortality. However, BMI only approximates body adiposity, and may be confounded by centralized fat deposition or lean body mass in older men. Our objective was to use bioelectric impedance analysis (BIA) to measure body composition and determine the association between prostate cancer and total body fat mass (FM) fat-free mass (FFM), and percent body fat (%BF), and which body composition measure mediated the association between BMI or waist circumference (WC) with prostate cancer.</p> <p>Methods</p> <p>The study used a multi-centered recruitment protocol targeting men scheduled for prostate biopsy. Men without prostate cancer at biopsy served as controls (n = 1057). Prostate cancer cases were classified as having Gleason 6 (n = 402), Gleason 7 (n = 272), or Gleason 8-10 (n = 135) cancer. BIA and body size measures were ascertained by trained staff prior to diagnosis, and clinical and comorbidity status were determined by chart review. Analyses utilized multivariable linear and logistic regression.</p> <p>Results</p> <p>Body size and composition measures were not significantly associated with low-grade (Gleason 6) prostate cancer. In contrast, BMI, WC, FM, and FFM were associated with an increased risk of Gleason 7 and Gleason 8-10 prostate cancer. Furthermore, BMI and WC were no longer associated with Gleason 8-10 (OR<sub>BMI </sub>= 1.039 (1.000, 1.081), OR<sub>WC </sub>= 1.016 (0.999, 1.033), continuous scales) with control for total body FFM (OR<sub>BMI </sub>= 0.998 (0.946, 1.052), OR<sub>WC </sub>= 0.995 (0.974, 1.017)). Furthermore, increasing FFM remained significantly associated with Gleason 7 (OR<sub>FFM </sub>= 1.030 (1.008, 1.052)) and Gleason 8-10 (OR<sub>FFM </sub>= 1.044 (1.014, 1.074)) after controlling for FM.</p> <p>Conclusions</p> <p>Our results suggest that associations between BMI and WC with high-grade prostate cancer are mediated through the measurement of total body FFM. It is unlikely that FFM causes prostate cancer, but instead provides a marker of testosterone or IGF1 activities involved with retaining lean mass as men age.</p
    corecore