725 research outputs found

    Should we welcome robot teachers?

    Get PDF
    Abstract Current uses of robots in classrooms are reviewed and used to characterise four scenarios: (s1) Robot as Classroom Teacher; (s2) Robot as Companion and Peer; (s3) Robot as Care-eliciting Companion; and (s4) Telepresence Robot Teacher. The main ethical concerns associated with robot teachers are identified as: privacy; attachment, deception, and loss of human contact; and control and accountability. These are discussed in terms of the four identified scenarios. It is argued that classroom robots are likely to impact children’s’ privacy, especially when they masquerade as their friends and companions, when sensors are used to measure children’s responses, and when records are kept. Social robots designed to appear as if they understand and care for humans necessarily involve some deception (itself a complex notion), and could increase the risk of reduced human contact. Children could form attachments to robot companions (s2 and s3), or robot teachers (s1) and this could have a deleterious effect on their social development. There are also concerns about the ability, and use of robots to control or make decisions about children’s behaviour in the classroom. It is concluded that there are good reasons not to welcome fully fledged robot teachers (s1), and that robot companions (s2 and 3) should be given a cautious welcome at best. The limited circumstances in which robots could be used in the classroom to improve the human condition by offering otherwise unavailable educational experiences are discussed

    Activating KIR2DS4 Is Expressed by Uterine NK Cells and Contributes to Successful Pregnancy

    Get PDF
    Tissue-specific NK cells are abundant in the pregnant uterus and interact with invading placental trophoblast cells that transform the maternal arteries to increase the fetoplacental blood supply. Genetic case-control studies have implicated killer cell Ig-like receptor (KIR) genes and their HLA\textit{HLA} ligands in pregnancy disorders characterized by failure of trophoblast arterial transformation. Activating KIR2DS1\textit{KIR2DS1} or KIR2DS5\textit{KIR2DS5} (when located in the centromeric region as in Africans) lower the risk of disorders when there is a fetal HLA-C\textit{HLA-C} allele carrying a C2 epitope. In this study, we investigated another activating KIR, KIR2DS4\textit{KIR, KIR2DS4}, and provide genetic evidence for a similar effect when carried with KIR2DS1. KIR2DS4\textit{KIR2DS1. KIR2DS4} is expressed by ∼45% of uterine NK (uNK) cells. Similarly to KIR2DS1, triggering of KIR2DS4 on uNK cells led to secretion of GM-CSF and other chemokines, known to promote placental trophoblast invasion. Additionally, XCL1 and CCL1, identified in a screen of 120 different cytokines, were consistently secreted upon activation of KIR2DS4 on uNK cells. Inhibitory KIR2DL5A\textit{KIR2DL5A}, carried in linkage disequilibrium with KIR2DS1\textit{KIR2DS1}, is expressed by peripheral blood NK cells but not by uNK cells, highlighting the unique phenotype of uNK cells compared with peripheral blood NK cells. That KIR2DS4, KIR2DS1, and some alleles of KIR2DS5 contribute to successful pregnancy suggests that activation of uNK cells by KIR binding to HLA-C is a generic mechanism promoting trophoblast invasion into the decidua.This work was supported by the Wellcome Trust, the Centre for Trophoblast Research, the British Heart Foundation, and the Cambridge Philosophical Society

    Robot rights? Towards a social-relational justification of moral consideration \ud

    Get PDF
    Should we grant rights to artificially intelligent robots? Most current and near-future robots do not meet the hard criteria set by deontological and utilitarian theory. Virtue ethics can avoid this problem with its indirect approach. However, both direct and indirect arguments for moral consideration rest on ontological features of entities, an approach which incurs several problems. In response to these difficulties, this paper taps into a different conceptual resource in order to be able to grant some degree of moral consideration to some intelligent social robots: it sketches a novel argument for moral consideration based on social relations. It is shown that to further develop this argument we need to revise our existing ontological and social-political frameworks. It is suggested that we need a social ecology, which may be developed by engaging with Western ecology and Eastern worldviews. Although this relational turn raises many difficult issues and requires more work, this paper provides a rough outline of an alternative approach to moral consideration that can assist us in shaping our relations to intelligent robots and, by extension, to all artificial and biological entities that appear to us as more than instruments for our human purpose

    Computational Modelling of Patella Femoral Kinematics During Gait Cycle and Experimental Validation

    Get PDF
    The effect of loading and boundary conditions on patellar mechanics is significant due to the complications arising in patella femoral joints during total knee replacements. To understand the patellar mechanics with respect to loading and motion, a computational model representing the patella femoral joint was developed and validated against experimental results. The computational model was created in IDEAS NX and simulated in MSC ADAMS/VIEW software. The results obtained in the form of internal external rotations and anterior posterior displacements for a new and experimentally simulated specimen for patella femoral joint under standard gait condition were compared with experimental measurements performed on the Leeds ProSim knee simulator. A good overall agreement between the computational prediction and the experimental data was obtained for patella femoral kinematics. Good agreement between the model and the past studies was observed when the ligament load was removed and the medial lateral displacement was constrained. The model is sensitive to ±5 % change in kinematics, frictional, force and stiffness coefficients and insensitive to time step

    Dynamics of multi-stage infections on networks

    Get PDF
    This paper investigates the dynamics of infectious diseases with a nonexponentially distributed infectious period. This is achieved by considering a multistage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks, and it is shown how these quantities depend on disease characteristics, as well as the number of disease stages. Stochastic simulations of dynamics on networks are performed and compared to output of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. These results show that a higher number of disease stages results in faster epidemic outbreaks with a higher peak prevalence and a larger final size of the epidemic. The agreement between the pairwise and simulation models is excellent in the cases we consider

    Receptor subtype‐dependent galanin actions on gamma‐aminobutyric acidergic neurotransmission and ethanol responses in the central amygdala

    Full text link
    The neuropeptide galanin and its three receptor subtypes (GalR1‐3) are expressed in the central amygdala (CeA), a brain region involved in stress‐ and anxiety‐related behaviors, as well as alcohol dependence. Galanin also has been suggested to play a role in alcohol intake and alcohol dependence. We examined the effects of galanin in CeA slices from wild‐type and knockout (KO) mice deficient of GalR2 and both GalR1 and GalR2 receptors. Galanin had dual effects on gamma‐aminobutyric acid (GABA)‐ergic transmission, decreasing the amplitudes of pharmacologically isolated GABAergic inhibitory postsynaptic potentials (IPSPs) in over half of CeA neurons but augmenting IPSPs in the others. The increase in IPSP size was absent after superfusion of the GalR3 antagonist SNAP 37889, whereas the IPSP depression was absent in CeA neurons of GalR1 × GalR2 double KO and GalR2 KO mice. Paired‐pulse facilitation studies showed weak or infrequent effects of galanin on GABA release. Thus, galanin may act postsynaptically through GalR3 to augment GABAergic transmission in some CeA neurons, whereas GalR2 receptors likely are involved in the depression of IPSPs. Co‐superfusion of ethanol, which augments IPSPs presynaptically, together with galanin caused summated effects of ethanol and galanin in those CeA neurons showing galanin‐augmented IPSPs, suggesting the two agents act via different mechanisms in this population. However, in neurons showing IPSP‐diminishing galanin effects, galanin blunted the ethanol effects, suggesting a preemptive effect of galanin. These findings may increase understanding of the complex cellular mechanisms that underlie the anxiety‐related behavioral effects of galanin and ethanol in CeA.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/92021/1/j.1369-1600.2011.00360.x.pd

    Neonatal head and torso vibration exposure during inter-hospital transfer

    Get PDF
    Inter-hospital transport of premature infants is increasingly common, given the centralisation of neonatal intensive care. However, it is known to be associated with anomalously increased morbidity, most notably brain injury, and with increased mortality from multifactorial causes. Surprisingly, there have been relatively few previous studies investigating the levels of mechanical shock and vibration hazard present during this vehicular transport pathway. Using a custom inertial datalogger, and analysis software, we quantify vibration and linear head acceleration. Mounting multiple inertial sensing units on the forehead and torso of neonatal patients and a preterm manikin, and on the chassis of transport incubators over the duration of inter-site transfers, we find that the resonant frequency of the mattress and harness system currently used to secure neonates inside incubators is ~9Hz. This couples to vehicle chassis vibration, increasing vibration exposure to the neonate. The vibration exposure per journey (A(8) using the ISO 2631 standard) was at least 20% of the action point value of current European Union regulations over all 12 neonatal transports studied, reaching 70% in two cases. Direct injury risk from linear head acceleration (HIC15) was negligible. Although the overall hazard was similar, vibration isolation differed substantially between sponge and air mattresses, with a manikin. Using a Global Positioning System datalogger alongside inertial sensors, vibration increased with vehicle speed only above 60 km/h. These preliminary findings suggest there is scope to engineer better systems for transferring sick infants, thus potentially improving their outcomes

    Surface pretreatment for prolonged survival of cemented tibial prosthesis components: full- vs. surface-cementation technique

    Get PDF
    BACKGROUND: One of few persisting problems of cemented total knee arthroplasty (TKA) is aseptic loosening of tibial component due to degradation of the interface between bone cement and metallic tibial shaft component, particularly for surface cemented tibial components. Surface cementation technique has important clinical meaning in case of revision and for avoidance of stress shielding. Degradation of the interface between bone cement and bone may be a secondary effect due to excessive crack formation in bone cement starting at the opposite metallic surface. METHODS: This study was done to prove crack formation in the bone cement near the metallic surface when this is not coated. We propose a newly developed coating process by PVD layering with SiO(x )to avoid that crack formation in the bone cement. A biomechanical model for vibration fatigue test was done to simulate the physiological and biomechanical conditions of the human knee joint and to prove excessive crack formation. RESULTS: It was found that coated tibial components showed a highly significant reduction of cement cracking near the interface metal/bone cement (p < 0.01) and a significant reduction of gap formation in the interface metal-to-bone cement (p < 0.05). CONCLUSION: Coating dramatically reduces hydrolytic- and stress-related crack formation at the prosthesis interface metal/bone cement. This leads to a more homogenous load transfer into the cement mantle which should reduce the frequency of loosening in the interfaces metal/bone cement/bone. With surface coating of the tibial component it should become possible that surface cemented TKAs reveal similar loosening rates as TKAs both surface and stem cemented. This would be an important clinical advantage since it is believed that surface cementing reduces metaphyseal bone loss in case of revision and stress shielding for better bone health
    corecore