87 research outputs found

    Cryptic speciation and chromosomal repatterning in the South African climbing mice Dendromus (Rodentia, Nesomyidae)

    Get PDF
    We evaluate the intra- and interspecific diversity in the four South African rodent species of the genus Dendromus. The molecular phylogenetic analysis on twenty-three individuals have been conducted on a combined dataset of nuclear and mitochondrial markers. Moreover, the extent and processes underlying chromosomal variation, have been investigated on three species by mean of G-, C-bands, NORs and Zoo-FISH analysis. The molecular analysis shows the presence of six monophyletic lineages corresponding to D. mesomelas, D. mystacalis and four lineages within D. cfr. melanotis with high divergence values (ranges: 10.6% – 18.3%) that raises the question of the possible presence of cryptic species. The first description of the karyotype for D. mesomelas and D. mystacalis and C- and G- banding for one lineage of D. cfr. melanotis are reported highlighting an extended karyotype reorganization in the genus. Furthermore, the G-banding and Zoo-FISH evidenced an autosome-sex chromosome translocation characterizing all the species and our timing estimates this mutation date back 7.4 mya (Late Miocene). Finally, the molecular clock suggests that cladogenesis took place since the end of Miocene to Plio-Pleistocene, probably due to ecological factors, isolation in refugia followed by differential adaptation to the mesic or dry habitat

    Detecting 22q11.2 deletion in Chinese children with conotruncal heart defects and single nucleotide polymorphisms in the haploid TBX1 locus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Conotruncal heart defects (CTDs) are present in 75-85% of patients suffering from the 22q11.2 deletion syndrome. To date, no consistent phenotype has been consistently correlated with the 22q11.2 deletions. Genetic studies have implicated <it>TBX1 </it>as a critical gene in the pathogenesis of the syndrome. The aim of study was to determine the incidence of the 22q11.2 deletion in Chinese patients with CTDs and the possible mechanism for pathogenesis of CTDs.</p> <p>Methods</p> <p>We enrolled 212 patients with CTDs and 139 unrelated healthy controls. Both karyotypic analysis and multiplex ligation-dependent probe amplification were performed for all CTDs patients. Fluorescence <it>in situ </it>hybridization was performed for the patients with genetic deletions and their relatives. The <it>TBX1 </it>gene was sequenced for all patients and healthy controls. The <it>χ</it><sup>2 </sup>and Fisher's exact test were used in the statistical analysis.</p> <p>Results</p> <p>Thirteen of the 212 patients with CTDs (6.13%) were found to have the 22q11.2 deletion syndrome. Of the 13 cases, 11 presented with a hemizygous interstitial microdeletion from <it>CLTCL1 </it>to <it>LZTR1</it>; one presented with a regional deletion from <it>CLTCL1 </it>to <it>DRCR8</it>; and one presented with a regional deletion from <it>CDC45L </it>to <it>LZTR1</it>. There were eight sequence variants in the haploid <it>TBX1 </it>genes of the del22q11 CTDs patients. The frequency of one single nucleotide polymorphism (SNP) in the del22q11 patients was different from that of the non-del patients (<it>P </it>< 0.05), and the frequencies of two other SNPs were different between the non-del CTDs patients and controls (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>CTDs, especially pulmonary atresia with ventricular septal defect and tetralogy of Fallot, are the most common disorders associated with the 22q11.2 deletion syndrome. Those patients with both CTDs and 22q11.2 deletion generally have a typical or atypical deletion region within the <it>TBX1 </it>gene. Our results indicate that <it>TBX1 </it>genetic variants may be associated with CTDs.</p

    Defining the Sister Rat Mammary Tumor Cell Lines HH-16 cl.2/1 and HH-16.cl.4 as an In Vitro Cell Model for Erbb2

    Get PDF
    Cancer cell lines have been shown to be reliable tools in genetic studies of breast cancer, and the characterization of these lines indicates that they are good models for studying the biological mechanisms underlying this disease. Here, we describe the molecular cytogenetic/genetic characterization of two sister rat mammary tumor cell lines, HH-16 cl.2/1 and HH-16.cl.4, for the first time. Molecular cytogenetic analysis using rat and mouse chromosome paint probes and BAC/PAC clones allowed the characterization of clonal chromosome rearrangements; moreover, this strategy assisted in revealing detected breakpoint regions and complex chromosome rearrangements. This comprehensive cytogenetic analysis revealed an increase in the number of copies of the Mycn and Erbb2 genes in the investigated cell lines. To analyze its possible correlation with expression changes, relative RNA expression was assessed by real-time reverse transcription quantitative PCR and RNA FISH. Erbb2 was found to be overexpressed in HH-16.cl.4, but not in the sister cell line HH-16 cl.2/1, even though these lines share the same initial genetic environment. Moreover, the relative expression of Erbb2 decreased after global genome demethylation in the HH-16.cl.4 cell line. As these cell lines are commercially available and have been used in previous studies, the present detailed characterization improves their value as an in vitro cell model. We believe that the development of appropriate in vitro cell models for breast cancer is of crucial importance for revealing the genetic and cellular pathways underlying this neoplasy and for employing them as experimental tools to assist in the generation of new biotherapies

    Identification and Clonal Characterisation of a Progenitor Cell Sub-Population in Normal Human Articular Cartilage

    Get PDF
    Background: Articular cartilage displays a poor repair capacity. The aim of cell-based therapies for cartilage defects is to repair damaged joint surfaces with a functional replacement tissue. Currently, chondrocytes removed from a healthy region of the cartilage are used but they are unable to retain their phenotype in expanded culture. The resulting repair tissue is fibrocartilaginous rather than hyaline, potentially compromising long-term repair. Mesenchymal stem cells, particularly bone marrow stromal cells (BMSC), are of interest for cartilage repair due to their inherent replicative potential. However, chondrocyte differentiated BMSCs display an endochondral phenotype, that is, can terminally differentiate and form a calcified matrix, leading to failure in long-term defect repair. Here, we investigate the isolation and characterisation of a human cartilage progenitor population that is resident within permanent adult articular cartilage. Methods and Findings: Human articular cartilage samples were digested and clonal populations isolated using a differential adhesion assay to fibronectin. Clonal cell lines were expanded in growth media to high population doublings and karyotype analysis performed. We present data to show that this cell population demonstrates a restricted differential potential during chondrogenic induction in a 3D pellet culture system. Furthermore, evidence of high telomerase activity and maintenance of telomere length, characteristic of a mesenchymal stem cell population, were observed in this clonal cell population. Lastly, as proof of principle, we carried out a pilot repair study in a goat in vivo model demonstrating the ability of goat cartilage progenitors to form a cartilage-like repair tissue in a chondral defect. Conclusions: In conclusion, we propose that we have identified and characterised a novel cartilage progenitor population resident in human articular cartilage which will greatly benefit future cell-based cartilage repair therapies due to its ability to maintain chondrogenicity upon extensive expansion unlike full-depth chondrocytes that lose this ability at only seven population doublings

    New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis

    Get PDF
    A new human hepatocellular carcinoma (HCC) cell line with a highly metastatic potential was established from subcutaneous xenograft of a metastatic model of human HCC in nude mice (LCI-D20) by means of alternating cell culture in vitro and growth in nude mice. The line, designated MHCC97, has been cultivated for 18 months and subcultured for more than 90 passages. The line was showed to be of human origin by karyotype analysis. The cells were either grown as compact colonies (in clusters) or as a monolayered sheet with about 31 h of population-doubling time, exhibited typical malignant epithelial in morphology and were positive for α-fetoprotein (AFP). Flow cytometric analysis of the cell DNA content showed an aneuploid pattern, and its index was 1.5 as compared to that of normal human peripheral blood lymphocytes. Karyotypic analyses of G- and C-banding techniques revealed that all cells presented chromosome abnormalities in number and structure. The number of cell line MHCC97 chromosome ranged from 59 to 65 with a modal number of 60 and 61. At least two common chromosome markers, i(1q) and der(4)t(4;?)(4pter→q35::?), were present in all cells, and deletion of Y chromosome also occurred in all cells. The subcutaneous and intrahepatic xenografts were formed and metastatic lesions in lungs were found after the cells were inoculated into nude mice. The rate of metastasis to lungs was 100% using orthotopic inoculation. Reverse transcription polymerase chain reaction products revealed positive expressions of integrin α5 and β1, urokinase type plasminogen activator receptor (uPAR), vascular endothelial growth factor and nm23-H1 mRNAs of cell line MHCC97. Immunostaining of c-Met, uPAR showed strongly positive in both subcutaneous xenografts and lung metastatic lesions; while positive in xenografts and negative in metastatic lesions for integrin α5, β1. E-cadherin and P53 was not expressed either in xenograft or in the metastatic lesions. PCR products of HBsAg and HBxAg were both positive. The cell line MHCC97 still retained some characteristic features of original tumour. Establishment of cell line MHCC97 should be beneficial to the studies of HCC metastatic mechanisms. © 1999 Cancer Research Campaig

    Chromosome studies inChiropotes satanas utahicki hershkovitz, 1985 (cebidae, platyrrhini): A comparison withChiropotes satanas chiropotes

    No full text
    Frederick Cancer Research and Development Center. National Cancer Institute. Laboratory of Viral Carcinogenesis. Frederick, MD, US.lnstituto Nacional do Câncer. Serviço de Genética. Rio de Janeiro, RJ, Brasil.Universidade Federal do Pará. Departamento de Genética. Belém, PA, Brazil.Universidade Federal do Pará. Departamento de Genética. Belém, PA, Brazil.Universidade Federal do Pará. Departamento de Genética. Belém, PA, Brazil.Ministério da Saúde. Fundação Nacional de Saúde. Instituto Evandro Chagas. Centro Nacional de Primatas. Belém, PA, Brasil.Karyological characterizations of C. s. utahicki (2n = 54) and C. s. chiropotes (2n = 54) showed that these two subspecies are chromosomally very similar. In a single, isolated specimen of C s. utahicki, however, a derived, biarmed, chromosome 14 was found in the heterozygous condition. This variant chromosome was identical with pair 10 in C. s. chiropotes in which this chromosome type was apparently fixed. Chromosome differences between these subspecies might be transitional, leading to the establishment of two different karyomorphic populations derived from a once uniform karyotypic group that split into separate allopatric subspecies
    corecore