1,075 research outputs found

    Isoscalar dipole mode in relativistic random phase approximation

    Get PDF
    The isoscalar giant dipole resonance structure in 208^{208}Pb is calculated in the framework of a fully consistent relativistic random phase approximation, based on effective mean-field Lagrangians with nonlinear meson self-interaction terms. The results are compared with recent experimental data and with calculations performed in the Hartree-Fock plus RPA framework. Two basic isoscalar dipole modes are identified from the analysis of the velocity distributions. The discrepancy between the calculated strength distributions and current experimental data is discussed, as well as the implications for the determination of the nuclear matter incompressibility.Comment: 9 pages, Latex, 3. p.s figs, submitted to Phys. Lett.

    Finite Volume Effect of Nucleons and the Formation of the Quark-Gluon Plasma

    Full text link
    We study a thermodynamically consistent implementation of the nucleon volume in the mean field theory, and find that this volume has large consequences on the properties of hadronic matter under extreme conditions such as in astrophysical objects and high energy heavy-ion collisions. It is shown that we can reproduce the critical temperature Tc200T_{c}\simeq 200 MeV predicted by lattice QCD calculations for the phase transition from hadronic matter to quark-gluon plasma, by using parameters which are adjusted to fit all empirical data for normal nuclear matter.Comment: 11 Latex pages, 4 figures upon reques

    Isovector Giant Dipole Resonance of Stable Nuclei in a Consistent Relativistic Random Phase Approximation

    Full text link
    A fully consistent relativistic random phase approximation is applied to study the systematic behavior of the isovector giant dipole resonance of nuclei along the β\beta-stability line in order to test the effective Lagrangians recently developed. The centroid energies of response functions of the isovector giant dipole resonance for stable nuclei are compared with the corresponding experimental data and the good agreement is obtained. It is found that the effective Lagrangian with an appropriate nuclear symmetry energy, which can well describe the ground state properties of nuclei, could also reproduce the isovector giant dipole resonance of nuclei along the β\beta-stability line.Comment: 4 pages, 1 Postscript figure, to be submitted to Chin.Phys.Let

    Neutron rich nuclei in density dependent relativistic Hartree-Fock theory with isovector mesons

    Get PDF
    Density dependent relativistic Hartree-Fock theory has been extended to describe properties of exotic nuclei. The effects of Fock exchange terms and of pi - and rho - meson contributions are discussed. These effects are found to be more important for neutron rich nuclei than for nuclei near the valley of stability.Comment: 10 pages, 5 figures, LaTeX, macro packages graphicx and time

    Rho-Nucleon Tensor Coupling and Charge-Exchange Resonances

    Full text link
    The Gamow-Teller resonances are discussed in the context of a self-consistent RPA, based on the relativistic mean field theory. We inquire on the possibility of substituting the phenomenological Landau-Migdal force by a microscopic nucleon-nucleon interaction generated from the rho-nucleon tensor coupling. The effect of this coupling turns out to be very small when the short range correlations are not taken into account, but too large when these correlations are simulated by the simple extraction of the contact terms from the resulting nucleon-nucleon interaction.Comment: 15 pages, LaTeX, 2 figures; extended text, improved figures, new references added, the version appearing in Phys.Lett.

    The time-dependent relativistic mean-field theory and the random phase approximation

    Get PDF
    The Relativistic Random Phase Approximation (RRPA) is derived from the Time-dependent Relativistic Mean Field (TD RMF) theory in the limit of small amplitude oscillations. In the no-sea approximation of the RMF theory, the RRPA configuration space includes not only the usual particle-hole states, but also a-h configurations, i.e. pairs formed from occupied states in the Fermi sea and empty negative-energy states in the Dirac sea. The contribution of the negative energy states to the RRPA matrices is examined in a schematic model, and the large effect of Dirac sea states on isoscalar strength distributions is illustrated for the giant monopole resonance in 116Sn. It is shown that, because the matrix elements of the time-like component of the vector meson fields which couple the a-h configurations with the ph-configurations are strongly reduced with respect to the corresponding matrix elements of the isoscalar scalar meson field, the inclusion of states with unperturbed energies more than 1.2 GeV below the Fermi energy has a pronounced effect on giant resonances with excitation energies in the MeV region. The influence of nuclear magnetism, i.e. the effect of the spatial components of the vector fields is examined, and the difference between the non-relativistic and relativistic RPA predictions for the nuclear matter compression modulus is explained.Comment: 21 pages,2 figures, Nucl.Phys.A in pres

    Scaling in Relativistic Thomas-Fermi Approach for Nuclei

    Get PDF
    By using the scaling method we derive the virial theorem for the relativistic mean field model of nuclei treated in the Thomas-Fermi approach. The Thomas-Fermi solutions statisfy the stability condition against scaling. We apply the formalism to study the excitation energy of the breathing mode in finite nuclei with several relativistic parameter sets of common use.Comment: 13 page

    Description of nuclear systems within the relativistic Hartree-Fock method with zero range self-interactions of the scalar field

    Full text link
    An exact method is suggested to treat the nonlinear self-interactions (NLSI) in the relativistic Hartree-Fock (RHF) approach for nuclear systems. We consider here the NLSI constructed from the relativistic scalar nucleon densities and including products of six and eight fermion fields. This type of NLSI corresponds to the zero range limit of the standard cubic and quartic self-interactions of the scalar field. The method to treat the NLSI uses the Fierz transformation, which enables one to express the exchange (Fock) components in terms of the direct (Hartree) ones. The method is applied to nuclear matter and finite nuclei. It is shown that, in the RHF formalism, the NLSI, which are explicitly isovector-independent, generate scalar, vector and tensor nucleon self-energies strongly density-dependent. This strong isovector structure of the self-energies is due to the exchange terms of the RHF method. Calculations are carried out with a parametrization containing five free parameters. The model allows a description of both types of systems compatible with experimental data.Comment: 23 pages, 14 figures (v2: major quantitative changes

    Total Reaction Cross Section in an Isospin-Dependent Quantum Molecular Dynamics (IDQMD) Model

    Full text link
    The isospin-dependent quantum molecular dynamics (IDQMD) model is used to study the total reaction cross section σR\sigma_R. The energy-dependent Pauli volumes of neutrons and protons have been discussed and introduced into the IDQMD calculation to replace the widely used energy-independent Pauli volumes. The modified IDQMD calculation can reproduce the experimental σR\sigma_R well for both stable and exotic nuclei induced reactions. Comparisons of the calculated σR\sigma_R induced by 11Li^{11}Li with different initial density distributions have been performed. It is shown that the calculation by using the experimentally deduced density distribution with a long tail can fit the experimental excitation function better than that by using the Skyrme-Hartree-Fock calculated density without long tails. It is also found that σR\sigma_R at high energy is sensitive to the long tail of density distribution.Comment: 4 page, 4 fig

    Effective DBHF Method for Asymmetric Nuclear Matter and Finite Nuclei

    Full text link
    A new decomposition of the Dirac structure of nucleon self-energies in the Dirac Brueckner-Hartree-Fock (DBHF) approach is adopted to investigate the equation of state for asymmetric nuclear matter. The effective coupling constants of σ\sigma , ω\omega , δ\delta and ρ\rho mesons with a density dependence in the relativistic mean field approach are deduced by reproducing the nucleon self-energy resulting from the DBHF at each density for symmetric and asymmetric nuclear matter. With these couplings the properties of finite nuclei are investigated. The agreement of charge radii and binding energies of finite nuclei with the experimental data are improved simultaneously in comparison with the projection method. It seems that the properties of finite nuclei are sensitive to the scheme used for the DBHF self-energy extraction. We may conclude that the properties of the asymmetric nuclear matter and finite nuclei could be well described by the new decomposition approach of the G matrix.Comment: 16 pages, 5 figure
    corecore