1,126 research outputs found
Recommended from our members
Structure of the substrate-engaged SecA-SecY protein translocation machine.
The Sec61/SecY channel allows the translocation of many proteins across the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. In bacteria, most secretory proteins are transported post-translationally through the SecY channel by the SecA ATPase. How a polypeptide is moved through the SecA-SecY complex is poorly understood, as structural information is lacking. Here, we report an electron cryo-microscopy (cryo-EM) structure of a translocating SecA-SecY complex in a lipid environment. The translocating polypeptide chain can be traced through both SecA and SecY. In the captured transition state of ATP hydrolysis, SecAs two-helix finger is close to the polypeptide, while SecAs clamp interacts with the polypeptide in a sequence-independent manner by inducing a short β-strand. Taking into account previous biochemical and biophysical data, our structure is consistent with a model in which the two-helix finger and clamp cooperate during the ATPase cycle to move a polypeptide through the channel
Human behavior in Prisoner's Dilemma experiments suppresses network reciprocity
During the last few years, much research has been devoted to strategic
interactions on complex networks. In this context, the Prisoner's Dilemma has
become a paradigmatic model, and it has been established that imitative
evolutionary dynamics lead to very different outcomes depending on the details
of the network. We here report that when one takes into account the real
behavior of people observed in the experiments, both at the mean-field level
and on utterly different networks the observed level of cooperation is the
same. We thus show that when human subjects interact in an heterogeneous mix
including cooperators, defectors and moody conditional cooperators, the
structure of the population does not promote or inhibit cooperation with
respect to a well mixed population.Comment: 5 Pages including 4 figures. Submitted for publicatio
Cooperation and Contagion in Web-Based, Networked Public Goods Experiments
A longstanding idea in the literature on human cooperation is that
cooperation should be reinforced when conditional cooperators are more likely
to interact. In the context of social networks, this idea implies that
cooperation should fare better in highly clustered networks such as cliques
than in networks with low clustering such as random networks. To test this
hypothesis, we conducted a series of web-based experiments, in which 24
individuals played a local public goods game arranged on one of five network
topologies that varied between disconnected cliques and a random regular graph.
In contrast with previous theoretical work, we found that network topology had
no significant effect on average contributions. This result implies either that
individuals are not conditional cooperators, or else that cooperation does not
benefit from positive reinforcement between connected neighbors. We then tested
both of these possibilities in two subsequent series of experiments in which
artificial seed players were introduced, making either full or zero
contributions. First, we found that although players did generally behave like
conditional cooperators, they were as likely to decrease their contributions in
response to low contributing neighbors as they were to increase their
contributions in response to high contributing neighbors. Second, we found that
positive effects of cooperation were contagious only to direct neighbors in the
network. In total we report on 113 human subjects experiments, highlighting the
speed, flexibility, and cost-effectiveness of web-based experiments over those
conducted in physical labs
Generosity Pays in the Presence of Direct Reciprocity: A Comprehensive Study of 2×2 Repeated Games
By applying a technique previously developed to study ecosystem assembly [Capitán et al., Phys. Rev. Lett. 103, 168101 (2009)] we study the evolutionary stable strategies of iterated 22 games. We focus on memory-one strategies, whose probability to play a given action depends on the actions of both players in the previous time step. We find the asymptotically stable populations resulting from all possible invasions of any known stable population. The results of this invasion process are interpreted as transitions between different populations that occur with a certain probability. Thus the whole process can be described as a Markov chain whose states are the different stable populations. With this approach we are able to study the whole space of symmetric 22 games, characterizing the most probable results of evolution for the different classes of games. Our analysis includes quasi-stationary mixed equilibria that are relevant as very long-lived metastable states and is compared to the predictions of a fixation probability analysis. We confirm earlier results on the success of the Pavlov strategy in a wide range of parameters for the iterated Prisoner's Dilemma, but find that as the temptation to defect grows there are many other possible successful strategies. Other regions of the diagram reflect the equilibria structure of the underlying one-shot game, albeit often some non-expected strategies arise as well. We thus provide a thorough analysis of iterated 22 games from which we are able to extract some general conclusions. Our most relevant finding is that a great deal of the payoff parameter range can still be understood by focusing on win-stay, lose-shift strategies, and that very ambitious ones, aspiring to obtaining always a high payoff, are never evolutionary stable
Favorable outcome of early treatment of new onset child and adolescent migraine-implications for disease modification.
There is evidence that the prevalence of migraine in children and adolescents may be increasing. Current theories of migraine pathophysiology in adults suggest activation of central cortical and brainstem pathways in conjunction with the peripheral trigeminovascular system, which ultimately results in release of neuropeptides, facilitation of central pain pathways, neurogenic inflammation surrounding peripheral vessels, and vasodilatation. Although several risk factors for frequent episodic, chronic, and refractory migraine have been identified, the causes of migraine progression are not known. Migraine pathophysiology has not been fully evaluated in children. In this review, we will first discuss the evidence that early therapeutic interventions in the child or adolescent new onset migraineur, may halt or limit progression and disability. We will then review the evidence suggesting that many adults with chronic or refractory migraine developed their migraine as children or adolescents and may not have been treated adequately with migraine-specific therapy. Finally, we will show that early, appropriate and optimal treatment of migraine during childhood and adolescence may result in disease modification and prevent progression of this disease
Revisiting Date and Party Hubs: Novel Approaches to Role Assignment in Protein Interaction Networks
The idea of 'date' and 'party' hubs has been influential in the study of
protein-protein interaction networks. Date hubs display low co-expression with
their partners, whilst party hubs have high co-expression. It was proposed that
party hubs are local coordinators whereas date hubs are global connectors. Here
we show that the reported importance of date hubs to network connectivity can
in fact be attributed to a tiny subset of them. Crucially, these few, extremely
central, hubs do not display particularly low expression correlation,
undermining the idea of a link between this quantity and hub function. The
date/party distinction was originally motivated by an approximately bimodal
distribution of hub co-expression; we show that this feature is not always
robust to methodological changes. Additionally, topological properties of hubs
do not in general correlate with co-expression. Thus, we suggest that a
date/party dichotomy is not meaningful and it might be more useful to conceive
of roles for protein-protein interactions rather than individual proteins. We
find significant correlations between interaction centrality and the functional
similarity of the interacting proteins.Comment: 27 pages, 5 main figures, 4 supplementary figure
Deficient Liver Biosynthesis of Docosahexaenoic Acid Correlates with Cognitive Impairment in Alzheimer's Disease
Reduced brain levels of docosahexaenoic acid (C22:6n-3), a neurotrophic and neuroprotective fatty acid, may contribute to cognitive decline in Alzheimer's disease. Here, we investigated whether the liver enzyme system that provides docosahexaenoic acid to the brain is dysfunctional in this disease. Docosahexaenoic acid levels were reduced in temporal cortex, mid-frontal cortex and cerebellum of subjects with Alzheimer's disease, compared to control subjects (P = 0.007). Mini Mental State Examination (MMSE) scores positively correlated with docosahexaenoic/α-linolenic ratios in temporal cortex (P = 0.005) and mid-frontal cortex (P = 0.018), but not cerebellum. Similarly, liver docosahexaenoic acid content was lower in Alzheimer's disease patients than control subjects (P = 0.011). Liver docosahexaenoic/α-linolenic ratios correlated positively with MMSE scores (r = 0.78; P<0.0001), and negatively with global deterioration scale grades (P = 0.013). Docosahexaenoic acid precursors, including tetracosahexaenoic acid (C24:6n-3), were elevated in liver of Alzheimer's disease patients (P = 0.041), whereas expression of peroxisomal d-bifunctional protein, which catalyzes the conversion of tetracosahexaenoic acid into docosahexaenoic acid, was reduced (P = 0.048). Other genes involved in docosahexaenoic acid metabolism were not affected. The results indicate that a deficit in d-bifunctional protein activity impairs docosahexaenoic acid biosynthesis in liver of Alzheimer's disease patients, lessening the flux of this neuroprotective fatty acid to the brain
Efficiency in a forced contribution threshold public good game
We contrast and compare three ways of predicting efficiency in a forced contribution threshold public good game. The three alternatives are based on ordinal potential, quantal response and impulse balance theory. We report an experiment designed to test the respective predictions and find that impulse balance gives the best predictions. A simple expression detailing when enforced contributions result in high or low efficiency is provided
- …