645 research outputs found

    A database of whole-body action videos for the study of action, emotion, and untrustworthiness

    Get PDF
    We present a database of high-definition (HD) videos for the study of traits inferred from whole-body actions. Twenty-nine actors (19 female) were filmed performing different actions—walking, picking up a box, putting down a box, jumping, sitting down, and standing and acting—while conveying different traits, including four emotions (anger, fear, happiness, sadness), untrustworthiness, and neutral, where no specific trait was conveyed. For the actions conveying the four emotions and untrustworthiness, the actions were filmed multiple times, with the actor conveying the traits with different levels of intensity. In total, we made 2,783 action videos (in both two-dimensional and three-dimensional format), each lasting 7 s with a frame rate of 50 fps. All videos were filmed in a green-screen studio in order to isolate the action information from all contextual detail and to provide a flexible stimulus set for future use. In order to validate the traits conveyed by each action, we asked participants to rate each of the actions corresponding to the trait that the actor portrayed in the two-dimensional videos. To provide a useful database of stimuli of multiple actions conveying multiple traits, each video name contains information on the gender of the actor, the action executed, the trait conveyed, and the rating of its perceived intensity. All videos can be downloaded free at the following address: http://www-users.york.ac.uk/~neb506/databases.html. We discuss potential uses for the database in the analysis of the perception of whole-body actions

    WoMMBAT: A user interface for hierarchical Bayesian estimation of working memory capacity

    Get PDF
    The change detection paradigm has become an important tool for researchers studying working memory. Change detection is especially useful for studying visual working memory, because recall paradigms are difficult to employ in the visual modality. Pashler (Perception & Psychophysics, 44, 369–378, 1988) and Cowan (Behavioral and Brain Sciences, 24, 87–114, 2001) suggested formulas for estimating working memory capacity from change detection data. Although these formulas have become widely used, Morey (Journal of Mathematical Psychology, 55, 8–24, 2011) showed that the formulas suffer from a number of issues, including inefficient use of information, bias, volatility, uninterpretable parameter estimates, and violation of ANOVA assumptions. Morey presented a hierarchical Bayesian extension of Pashler’s and Cowan’s basic models that mitigates these issues. Here, we present WoMMBAT (Working Memory Modeling using Bayesian Analysis Techniques) software for fitting Morey’s model to data. WoMMBAT has a graphical user interface, is freely available, and is cross-platform, running on Windows, Linux, and Mac operating systems

    Reactivity of (1-methoxycarbonylpentadienyl)iron(1+) cations with hydride, methyl, and nitrogen nucleophiles

    Get PDF
    The reaction of tricarbonyl and (dicarbonyl)triphenylphosphine (1-methoxycarbonyl-pentadientyl)iron(1+) cations 7 and 8 with methyl lithium, NaBH3CN, or potassium phthalimide affords (pentenediyl)iron complexes 9a-c and 11a-b, while reaction with dimethylcuprate, gave (E,Z-diene)iron complexes 10 and 12. Oxidatively induced-reductive elimination of 9a-c gave vinylcyclopropanecarboxylates 17a-c. The optically active vinylcyclopropane (+)-17a, prepared from (1S)-7, undergoes olefin cross-metathesis with excess (+)-18 to yield (+)-19, a C9C16 synthon for the antifungal agent ambruticin. Alternatively reaction of 7 with methanesulfonamide or trimethylsilylazide gave (E,E-diene)iron complexes 14d and e. Huisgen [3 + 2] cyclization of the (azidodienyl)iron complex 14e with alkynes afforded triazoles 25a-e

    Opportunity for verbalization does not improve visual change detection performance:A state trace analysis

    Get PDF
    Evidence suggests that there is a tendency to verbally recode visually-presented information, and that in some cases verbal recoding can boost memory performance. According to multi-component models of working memory, memory performance is increased because task-relevant information is simultaneously maintained in two codes. The possibility of dual encoding is problematic if the goal is to measure capacity for visual information exclusively. To counteract this possibility, articulatory suppression is frequently used with visual change detection tasks specifically to prevent verbalization of visual stimuli. But is this precaution always necessary? There is little reason to believe that concurrent articulation affects performance in typical visual change detection tasks, suggesting that verbal recoding might not be likely to occur in this paradigm, and if not, precautionary articulatory suppression would not always be necessary. We present evidence confirming that articulatory suppression has no discernible effect on performance in a typical visual change-detection task in which abstract patterns are briefly presented. A comprehensive analysis using both descriptive statistics and Bayesian state-trace analysis revealed no evidence for any complex relationship between articulatory suppression and performance that would be consistent with a verbal recoding explanation. Instead, the evidence favors the simpler explanation that verbal strategies were either not deployed in the task or, if they were, were not effective in improving performance, and thus have no influence on visual working memory as measured during visual change detection. We conclude that in visual change detection experiments in which abstract visual stimuli are briefly presented, pre-cautionary articulatory suppression is unnecessary

    CBX7 and miR-9 are part of an autoregulatory loop controlling p16(INK) (4a).

    Get PDF
    Polycomb repressive complexes (PRC1 and PRC2) are epigenetic regulators that act in coordination to influence multiple cellular processes including pluripotency, differentiation, cancer and senescence. The role of PRCs in senescence can be mostly explained by their ability to repress the INK4/ARF locus. CBX7 is one of five mammalian orthologues of Drosophila Polycomb that forms part of PRC1. Despite the relevance of CBX7 for regulating senescence and pluripotency, we have a limited understanding of how the expression of CBX7 is regulated. Here we report that the miR-9 family of microRNAs (miRNAS) downregulates the expression of CBX7. In turn, CBX7 represses miR-9-1 and miR-9-2 as part of a regulatory negative feedback loop. The miR-9/CBX7 feedback loop is a regulatory module contributing to induction of the cyclin-dependent kinase inhibitor (CDKI) p16(INK4a) during senescence. The ability of the miR-9 family to regulate senescence could have implications for understanding the role of miR-9 in cancer and aging

    Debris Disks: Probing Planet Formation

    Full text link
    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size) typically form in protoplanetary disks. Gas is now seen long into the debris disk phase. Some of this is secondary implying planetesimals have a Solar System comet-like composition, but some systems may retain primordial gas. Ongoing planet formation processes are invoked for some debris disks, such as the continued growth of dwarf planets in an unstirred disk, or the growth of terrestrial planets through giant impacts. Planets imprint structure on debris disks in many ways; images of gaps, clumps, warps, eccentricities and other disk asymmetries, are readily explained by planets at >>5au. Hot dust in the region planets are commonly found (<5au) is seen for a growing number of stars. This dust usually originates in an outer belt (e.g., from exocomets), although an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018

    Differential Regulation and Recovery of Intracellular Ca2+ in Cerebral and Small Mesenteric Arterial Smooth Muscle Cells of Simulated Microgravity Rat

    Get PDF
    BACKGROUND: The differential adaptations of cerebrovasculature and small mesenteric arteries could be one of critical factors in postspaceflight orthostatic intolerance, but the cellular mechanisms remain unknown. We hypothesize that there is a differential regulation of intracellular Ca(2+) determined by the alterations in the functions of plasma membrane Ca(L) channels and ryanodine-sensitive Ca(2+) releases from sarcoplasmic reticulum (SR) in cerebral and small mesenteric vascular smooth muscle cells (VSMCs) of simulated microgravity rats, respectively. METHODOLOGY/PRINCIPAL FINDINGS: Sprague-Dawley rats were subjected to 28-day hindlimb unweighting to simulate microgravity. In addition, tail-suspended rats were submitted to a recovery period of 3 or 7 days after removal of suspension. The function of Ca(L) channels was evaluated by patch clamp and Western blotting. The function of ryanodine-sensitive Ca(2+) releases in response to caffeine were assessed by a laser confocal microscope. Our results indicated that simulated microgravity increased the functions of Ca(L) channels and ryanodine-sensitive Ca(2+) releases in cerebral VSMCs, whereas, simulated microgravity decreased the functions of Ca(L) channels and ryanodine-sensitive Ca(2+) releases in small mesenteric VSMCs. In addition, 3- or 7-day recovery after removal of suspension could restore the functions of Ca(L) channels and ryanodine-sensitive Ca(2+) releases to their control levels in cerebral and small mesenteric VSMCs, respectively. CONCLUSIONS: The differential regulation of Ca(L) channels and ryanodine-sensitive Ca(2+) releases in cerebral and small mesenteric VSMCs may be responsible for the differential regulation of intracellular Ca(2+), which leads to the altered autoregulation of cerebral vasculature and the inability to adequately elevate peripheral vascular resistance in postspaceflight orthostatic intolerance
    corecore