482 research outputs found

    Transparent dense sodium

    Full text link
    Under pressure, metals exhibit increasingly shorter interatomic distances. Intuitively, this response is expected to be accompanied by an increase in the widths of the valence and conduction bands and hence a more pronounced free-electron-like behaviour. But at the densities that can now be achieved experimentally, compression can be so substantial that core electrons overlap. This effect dramatically alters electronic properties from those typically associated with simple free-electron metals such as lithium and sodium, leading in turn to structurally complex phases and superconductivity with a high critical temperature. But the most intriguing prediction - that the seemingly simple metals Li and Na will transform under pressure into insulating states, owing to pairing of alkali atoms - has yet to be experimentally confirmed. Here we report experimental observations of a pressure-induced transformation of Na into an optically transparent phase at 200 GPa (corresponding to 5.0-fold compression). Experimental and computational data identify the new phase as a wide bandgap dielectric with a six-coordinated, highly distorted double-hexagonal close-packed structure. We attribute the emergence of this dense insulating state not to atom pairing, but to p-d hybridizations of valence electrons and their repulsion by core electrons into the lattice interstices. We expect that such insulating states may also form in other elements and compounds when compression is sufficiently strong that atomic cores start to overlap strongly.Comment: Published in Nature 458, 182-185 (2009

    Effect of small scale density perturbations on the formation of dark matter halo profiles

    Full text link
    With help of a set of toy N-body models of dark halo formation we study the impact of small scale initial perturbations on the inner density profiles of haloes. We find a significant flattening of the inner slope α=dlogρdlogr\alpha={d \log \rho \over d \log r} to α=0.5\alpha=-0.5 in some range of scales and amplitudes of the perturbations (while in the case of absence of these perturbations the NFW profile with α=1\alpha=-1 is reproduced). This effect may be responsible for the formation of cuspless galactic haloes.Comment: 5 pages, 2 figures, accepted for publication in MNRAS Letter

    Importance of Itinerancy and Quantum Fluctuations for the Magnetism in Iron Pnictides

    Full text link
    By applying density functional theory, we find strong evidence for an itinerant nature of magnetism in two families of iron pnictides. Furthermore, by employing dynamical mean field theory with continuous time quantum Monte Carlo as an impurity solver, we observe that the antiferromagnetic metal with small magnetic moment naturally arises out of coupling between unfrustrated and frustrated bands. Our results point to a possible scenario for magnetism in iron pnictides where magnetism originates from a strong instability at the momentum vector (π\pi, π\pi, π\pi) while it is reduced by quantum fluctuations due to the coupling between weakly and strongly frustrated bands.Comment: 4 pages, 4 figure

    A Unifying Model of Genome Evolution Under Parsimony

    Get PDF
    We present a data structure called a history graph that offers a practical basis for the analysis of genome evolution. It conceptually simplifies the study of parsimonious evolutionary histories by representing both substitutions and double cut and join (DCJ) rearrangements in the presence of duplications. The problem of constructing parsimonious history graphs thus subsumes related maximum parsimony problems in the fields of phylogenetic reconstruction and genome rearrangement. We show that tractable functions can be used to define upper and lower bounds on the minimum number of substitutions and DCJ rearrangements needed to explain any history graph. These bounds become tight for a special type of unambiguous history graph called an ancestral variation graph (AVG), which constrains in its combinatorial structure the number of operations required. We finally demonstrate that for a given history graph GG, a finite set of AVGs describe all parsimonious interpretations of GG, and this set can be explored with a few sampling moves.Comment: 52 pages, 24 figure

    Temperature and pressure evolution of the crystal structure of Ax(Fe1-ySe)2 (A = Cs, Rb, K) studied by synchrotron powder diffraction

    Full text link
    Temperature-dependent synchrotron powder diffraction on Cs0.83(Fe0.86Se)2 revealed first order I4/m to I4/mmm structural transformation around 216{\deg}C associated with the disorder of the Fe vacancies. Irreversibility observed during the transition is likely associated with a mobility of intercalated Alkali atoms. Pressure-dependent synchrotron powder diffraction on Cs0.83(Fe1-ySe)2, Rb0.85(Fe1-ySe)2 and K0.8(Fe1-ySe)2 (y ~ 0.14) indicated that the I4/m superstructure reflections are present up to pressures of 120 kbar. This may indicate that the ordering of the Fe vacancies is present in both superconducting and non-superconductive states.Comment: 11 pages, 5 figures, 1 tabl

    Lepton Acceleration in Pulsar Wind Nebulae

    Full text link
    Pulsar Wind Nebulae (PWNe) act as calorimeters for the relativistic pair winds emanating from within the pulsar light cylinder. Their radiative dissipation in various wavebands is significantly different from that of their pulsar central engines: the broadband spectra of PWNe possess characteristics distinct from those of pulsars, thereby demanding a site of lepton acceleration remote from the pulsar magnetosphere. A principal candidate for this locale is the pulsar wind termination shock, a putatively highly-oblique, ultra-relativistic MHD discontinuity. This paper summarizes key characteristics of relativistic shock acceleration germane to PWNe, using predominantly Monte Carlo simulation techniques that compare well with semi-analytic solutions of the diffusion-convection equation. The array of potential spectral indices for the pair distribution function is explored, defining how these depend critically on the parameters of the turbulent plasma in the shock environs. Injection efficiencies into the acceleration process are also addressed. Informative constraints on the frequency of particle scattering and the level of field turbulence are identified using the multiwavelength observations of selected PWNe. These suggest that the termination shock can be comfortably invoked as a principal injector of energetic leptons into PWNe without resorting to unrealistic properties for the shock layer turbulence or MHD structure.Comment: 19 pages, 5 figures, invited review to appear in Proc. of the inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space Science series

    Evolution of tetragonal phase in the FeSe wire fabricated by a novel chemical-transformation PIT process

    Full text link
    We fabricated superconducting FeSe wires by the chemical-transformation PIT process. The obvious correlation between annealing temperature and phase transformation was observed. Annealing above 500^{\circ}C produced wire-core transformation from hexagonal to tetragonal phase. Furthermore the hexagonal phase completely transformed into the tetragonal phase by annealing at 1000^{\circ}C. With increasing annealing temperature, the superconducting property was dramatically improved, associated with the evolution of the tetragonal phase.Comment: 14 pages, 6 figure

    Reconstructing cancer genomes from paired-end sequencing data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A cancer genome is derived from the germline genome through a series of somatic mutations. Somatic structural variants - including duplications, deletions, inversions, translocations, and other rearrangements - result in a cancer genome that is a scrambling of intervals, or "blocks" of the germline genome sequence. We present an efficient algorithm for reconstructing the block organization of a cancer genome from paired-end DNA sequencing data.</p> <p>Results</p> <p>By aligning paired reads from a cancer genome - and a matched germline genome, if available - to the human reference genome, we derive: (i) a partition of the reference genome into intervals; (ii) adjacencies between these intervals in the cancer genome; (iii) an estimated copy number for each interval. We formulate the Copy Number and Adjacency Genome Reconstruction Problem of determining the cancer genome as a sequence of the derived intervals that is consistent with the measured adjacencies and copy numbers. We design an efficient algorithm, called Paired-end Reconstruction of Genome Organization (PREGO), to solve this problem by reducing it to an optimization problem on an interval-adjacency graph constructed from the data. The solution to the optimization problem results in an Eulerian graph, containing an alternating Eulerian tour that corresponds to a cancer genome that is consistent with the sequencing data. We apply our algorithm to five ovarian cancer genomes that were sequenced as part of The Cancer Genome Atlas. We identify numerous rearrangements, or structural variants, in these genomes, analyze reciprocal vs. non-reciprocal rearrangements, and identify rearrangements consistent with known mechanisms of duplication such as tandem duplications and breakage/fusion/bridge (B/F/B) cycles.</p> <p>Conclusions</p> <p>We demonstrate that PREGO efficiently identifies complex and biologically relevant rearrangements in cancer genome sequencing data. An implementation of the PREGO algorithm is available at <url>http://compbio.cs.brown.edu/software/</url>.</p

    Characterization analysis and polymorphism detection of the porcine Myd88 gene

    Get PDF
    The myeloid differentiation primary response protein 88 (Myd88) is an essential adaptor protein, which mediates in all Toll-like receptor (TLR) members signal transduction, except for TLR3. In this study, the 4464 bp genomic sequence of porcine Myd88 was first isolated, whereupon tissue distribution, chromosome mapping and single nucleotide polymorphism (SNP) were analyzed. Our results revealed that porcine Myd88 gene, which was located at chromosome 13 linked with marker S0288 (distance = 40 cR; LOD = 8.66), was widely expressed in all the examined tissues. There were 16 potential SNPs in the isolated genome fragment. SNP 797T/C in the first intron was studied, with no significant association being found between the genotype and immune traits in pigs (p > 0.05). The porcine Myd88 protein contained both the death domain (DD) and the Toll/IL-1 receptor domain (TIR). Leu residues, essential for its structure, were the most abundant encountered in the DD. The TIR contained two conserved motifs which may play important roles in the Myd88 function

    Disentangling astroglial physiology with a realistic cell model in silico

    Get PDF
    Electrically non-excitable astroglia take up neurotransmitters, buffer extracellular K+ and generate Ca2+ signals that release molecular regulators of neural circuitry. The underlying machinery remains enigmatic, mainly because the sponge-like astrocyte morphology has been difficult to access experimentally or explore theoretically. Here, we systematically incorporate multi-scale, tri-dimensional astroglial architecture into a realistic multi-compartmental cell model, which we constrain by empirical tests and integrate into the NEURON computational biophysical environment. This approach is implemented as a flexible astrocyte-model builder ASTRO. As a proof-of-concept, we explore an in silico astrocyte to evaluate basic cell physiology features inaccessible experimentally. Our simulations suggest that currents generated by glutamate transporters or K+ channels have negligible distant effects on membrane voltage and that individual astrocytes can successfully handle extracellular K+ hotspots. We show how intracellular Ca2+ buffers affect Ca2+ waves and why the classical Ca2+ sparks-and-puffs mechanism is theoretically compatible with common readouts of astroglial Ca2+ imaging
    corecore