28 research outputs found

    Hydro-dynamic Solute Transport under Two-Phase Flow Conditions

    No full text
    There are abundant examples of natural, engineering and industrial applications, in which “solute transport” and “mixing” in porous media occur under multiphase flow conditions. Current state-of-the-art understanding and modelling of such processes are established based on flawed and non-representative models. Moreover, there is no direct experimental result to show the true hydrodynamics of transport and mixing under multiphase flow conditions while the saturation topology is being kept constant for a number of flow rates. With the use of a custom-made microscope, and under well-controlled flow boundary conditions, we visualized directly the transport of a tracer in a Reservoir-on-Chip (RoC) micromodel filled with two immiscible fluids. This study provides novel insights into the saturation-dependency of transport and mixing in porous media. To our knowledge, this is the first reported pore-scale experiment in which the saturation topology, relative permeability, and tortuosity were kept constant and transport was studied under different dynamic conditions in a wide range of saturation. The critical role of two-phase hydrodynamic properties on non-Fickian transport and saturation-dependency of dispersion are discussed, which highlight the major flaws in parametrization of existing models

    The use of numerical flow and transport models in environmental analyses

    No full text
    This chapter provides an overview of alternative approaches for modeling water flow and contaminant transport problems in soils and groundwater. Special focus is on flow and transport processes in the variably saturated vadose zone between the soil surface and the groundwater table. The governing flow and transport equations are discussed for both equilibrium and nonequilibrium flow conditions, followed by three examples. The first example shows how one-dimensional root-zone modeling can be used to estimate short- and long-term recharge rates, including contaminant transport through the vadose zone. A second example illustrates a two-dimensional application involving drip irrigation, while the third example deals with two-dimensional nonequilibrium transport of a pesticide in a tile-drained field soil. Also discussed are alternative pore-scale modeling approaches that may provide a better understanding of the basic physical and geochemical processes affecting fluid flow and contaminant transport in saturated and variably saturated media
    corecore