27 research outputs found

    Assembly and dynamics of the bacteriophage T4 homologous recombination machinery

    Get PDF
    Homologous recombination (HR), a process involving the physical exchange of strands between homologous or nearly homologous DNA molecules, is critical for maintaining the genetic diversity and genome stability of species. Bacteriophage T4 is one of the classic systems for studies of homologous recombination. T4 uses HR for high-frequency genetic exchanges, for homology-directed DNA repair (HDR) processes including DNA double-strand break repair, and for the initiation of DNA replication (RDR). T4 recombination proteins are expressed at high levels during T4 infection in E. coli, and share strong sequence, structural, and/or functional conservation with their counterparts in cellular organisms. Biochemical studies of T4 recombination have provided key insights on DNA strand exchange mechanisms, on the structure and function of recombination proteins, and on the coordination of recombination and DNA synthesis activities during RDR and HDR. Recent years have seen the development of detailed biochemical models for the assembly and dynamics of presynaptic filaments in the T4 recombination system, for the atomic structure of T4 UvsX recombinase, and for the roles of DNA helicases in T4 recombination. The goal of this chapter is to review these recent advances and their implications for HR and HDR mechanisms in all organisms

    Drosophila DNA polymerase theta utilizes both helicase-like and polymerase domains during microhomology-mediated end joining and interstrand crosslink repair

    Get PDF
    Double strand breaks (DSBs) and interstrand crosslinks (ICLs) are toxic DNA lesions that can be repaired through multiple pathways, some of which involve shared proteins. One of these proteins, DNA Polymerase theta (Pol theta), coordinates a mutagenic DSB repair pathway named microhomology-mediated end joining (MMEJ) and is also a critical component for bypass or repair of ICLs in several organisms. Pol theta contains both polymerase and helicase-like domains that are tethered by an unstructured central region. While the role of the polymerase domain in promoting MMEJ has been studied extensively both in vitro and in vivo, a function for the helicase-like domain, which possesses DNA-dependent ATPase activity, remains unclear. Here, we utilize genetic and biochemical analyses to examine the roles of the helicase-like and polymerase domains of Drosophila Pol theta. We demonstrate an absolute requirement for both polymerase and ATPase activities during ICL repair in vivo. However, similar to mammalian systems, polymerase activity, but not ATPase activity, is required for ionizing radiation-induced DSB repair. Using a site-specific break repair assay, we show that overall end-joining efficiency is not affected in ATPase-dead mutants, but there is a significant decrease in templated insertion events. In vitro, Pol theta can efficiently bypass a model unhooked nitrogen mustard crosslink and promote DNA synthesis following microhomology annealing, although ATPase activity is not required for these functions. Together, our data illustrate the functional importance of the helicase-like domain of Pol theta and suggest that its tethering to the polymerase domain is important for its multiple functions in DNA repair and damage tolerance

    Rad3-dependent phosphorylation of the checkpoint clamp regulates repair-pathway choice

    No full text
    When replication forks collapse, Rad3 phosphorylates the checkpoint-clamp protein Rad9 in a manner that depends on Thr 225, a residue within the PCNA-like domain. The physiological function of Thr 225-dependent Rad9 phosphorylation, however, remains elusive. Here, we show that Thr 225-dependent Rad9 phosphorylation by Rad3 regulates DNA repair pathways. A rad9T225C mutant induces a translesion synthesis (TLS)-dependent high spontaneous mutation rate and a hyper-recombination phenotype. Consistent with this, Rad9 coprecipitates with the post-replication repair protein Mms2. This interaction is dependent on Rad9 Thr 225 and is enhanced by DNA damage. Genetic analyses indicate that Thr 225-dependent Rad9 phosphorylation prevents inappropriate Rhp51-dependent recombination, potentially by redirecting the repair through a Pli1-mediated sumoylation pathway into the error-free branch of the Rhp6 repair pathway. Our findings reveal a new mechanism by which phosphorylation of Rad9 at Thr 225 regulates the choice of repair pathways for maintaining genomic integrity during the cell cycle

    A Method to Enable Ability-Based Human Resource Allocation in Business Process Management Systems

    No full text
    Part 1: Business Process ModelingInternational audienceBusiness process management systems are used to orchestrate the activities in an organization. These information systems allocate resources to perform activities based on information that describes those resources and activities. It is widely recognized that resource allocation can be enhanced by considering resource characteristics during selection. However, little guidance is available that shows how such characteristics should be specified. Human ability is one such characteristic, with the advantage that it is well-defined in the Fleishman Taxonomy of Human Abilities. This paper presents a method that leverages the Fleishman taxonomy to specify activities and human resources. Those specifications are then used to allocate resources to activities during process run-time. We show how ability-based resource allocation can be implemented in a business process management system and evaluate the method in a real-world scenario
    corecore