83 research outputs found

    Analysis of phenolic compounds from different morphological parts of Helichrysum devium by liquid chromatography with on-line UV and electrospray ionization mass spectrometric detection

    Get PDF
    A simple and rapid method has been used for the screening and identification of the main phenolic compounds from Helichrysum devium using high-performance liquid chromatography with on-line UV and electrospray ionization mass spectrometric detection (LC-DAD/ESI-MS(n)). The total aerial parts and different morphological parts of the plant, namely leaves, flowers and stems, were analyzed separately. A total of 34 compounds present in the methanolic extract from Helichrysum devium were identified or tentatively characterized based on their UV and mass spectra and retention times. Three of these compounds were positively identified by comparison with reference standards. The phenolic compounds included derivatives of quinic acid, O-glycosylated flavonoids, a caffeic acid derivative and a protocatechuic acid derivative. The characteristic loss of 206 Da from malonylcaffeoyl quinic acid was used to confirm the malonyl linkage to the caffeoyl group. This contribution presents one of the first reports on the analysis of phenolic compounds from Helichrysum devium using LC-DAD/ESI-MS(n) and highlights the prominence of quinic acid derivatives as the main group of phenolic compounds present in these extracts. We also provide evidence that the methanolic extract from the flowers was significantly more complex when compared to that of other morphological parts.info:eu-repo/semantics/publishedVersio

    Insights into the formation mechanism of two-dimensional lead halide nanostructures

    Get PDF
    We present a colloidal synthesis strategy for lead halide nanosheets with a thickness of far below 100 nm. Due to the layered structure and the synthesis parameters the crystals of PbI2 are initially composed of many polytypes. We propose a mechanism which gives insight into the chemical process of the PbI2 formation. Further, we found that the crystal structure changes with increasing reaction temperature or by performing the synthesis for longer time periods changing for the final 2H structure. In addition, we demonstrate a route to prepare nanosheets of lead bromide as well as lead chloride in a similar way. Lead halides can be used as a detector material for high-energy photons including gamma and X-rays
    corecore