244 research outputs found

    The Vortex State in Geologic Materials: A Micromagnetic Perspective

    Get PDF
    A wide variety of Earth and planetary materials are very good recorders of paleomagnetic information. However most magnetic grains in these materials are not in the stable single (SD) domain grain size range, but are larger and in non-uniform vortex magnetization states. We provide a detailed account of vortex phenomena in geologic materials by simulating first-order reversal curves (FORCs) via finite-element micromagnetic modeling of magnetite nanoparticles with realistic morphologies. The particles have been reconstructed from focused ion beam nanotomography of magnetite-bearing obsidian, and accommodate single and multiple vortex structures. Single vortex (SV) grains have fingerprints with contributions to both the transient and transient-free zones of FORC diagrams. A fundamental feature of the SV fingerprint is a central ridge, representing a distribution of negative saturation vortex annihilation fields. SV irreversible events at multiple field values along different FORC branches determine the asymmetry in the upper and lower lobes of generic bulk FORC diagrams of natural materials with grains predominantly in the vortex state. Multi vortex (MV) FORC signatures are modeled here for the first time. MV grains contribute mostly to the transient-free zone of a FORC diagram, averaging out to create a broad central peak. The intensity of the central peak is higher than that of the lobes, implying that MV particles are more abundant than SV particles in geologic materials with vortex state fingerprints. The abundance of MV particles, as well as their SD-like properties point to MV grains being the main natural remanent magnetization carriers in geologic materials.European Research Counci

    Spatio-Temporal Interpolation Is Accomplished by Binocular Form and Motion Mechanisms

    Get PDF
    Spatio-temporal interpolation describes the ability of the visual system to perceive shapes as whole figures (Gestalts), even if they are moving behind narrow apertures, so that only thin slices of them meet the eye at any given point in time. The interpolation process requires registration of the form slices, as well as perception of the shape's global motion, in order to reassemble the slices in the correct order. The commonly proposed mechanism is a spatio-temporal motion detector with a receptive field, for which spatial distance and temporal delays are interchangeable, and which has generally been regarded as monocular. Here we investigate separately the nature of the motion and the form detection involved in spatio-temporal interpolation, using dichoptic masking and interocular presentation tasks. The results clearly demonstrate that the associated mechanisms for both motion and form are binocular rather than monocular. Hence, we question the traditional view according to which spatio-temporal interpolation is achieved by monocular first-order motion-energy detectors in favour of models featuring binocular motion and form detection

    Defining an Essence of Structure Determining Residue Contacts in Proteins

    Get PDF
    The network of native non-covalent residue contacts determines the three-dimensional structure of a protein. However, not all contacts are of equal structural significance, and little knowledge exists about a minimal, yet sufficient, subset required to define the global features of a protein. Characterisation of this “structural essence” has remained elusive so far: no algorithmic strategy has been devised to-date that could outperform a random selection in terms of 3D reconstruction accuracy (measured as the Ca RMSD). It is not only of theoretical interest (i.e., for design of advanced statistical potentials) to identify the number and nature of essential native contacts—such a subset of spatial constraints is very useful in a number of novel experimental methods (like EPR) which rely heavily on constraint-based protein modelling. To derive accurate three-dimensional models from distance constraints, we implemented a reconstruction pipeline using distance geometry. We selected a test-set of 12 protein structures from the four major SCOP fold classes and performed our reconstruction analysis. As a reference set, series of random subsets (ranging from 10% to 90% of native contacts) are generated for each protein, and the reconstruction accuracy is computed for each subset. We have developed a rational strategy, termed “cone-peeling” that combines sequence features and network descriptors to select minimal subsets that outperform the reference sets. We present, for the first time, a rational strategy to derive a structural essence of residue contacts and provide an estimate of the size of this minimal subset. Our algorithm computes sparse subsets capable of determining the tertiary structure at approximately 4.8 Å Ca RMSD with as little as 8% of the native contacts (Ca-Ca and Cb-Cb). At the same time, a randomly chosen subset of native contacts needs about twice as many contacts to reach the same level of accuracy. This “structural essence” opens new avenues in the fields of structure prediction, empirical potentials and docking

    A High Red Blood Cell Distribution Width Predicts Failure of Arteriovenous Fistula

    Get PDF
    In hemodialysis patients, a native arteriovenous fistula (AVF) is the preferred form of permanent vascular access. Despite recent improvements, vascular access dysfunction remains an important cause of morbidity in these patients. In this prospective observational cohort study, we evaluated potential risk factors for native AVF dysfunction. We included 68 patients with chronic renal disease stage 5 eligible for AVF construction at the Department of General and Vascular Surgery, Central Clinical Hospital Ministry of Internal Affairs, Warsaw, Poland. Patient characteristics and biochemical parameters associated with increased risk for AVF failure were identified using Cox proportional hazards models. Vessel biopsies were analyzed for inflammatory cells and potential associations with biochemical parameters. In multivariable analysis, independent predictors of AVF dysfunction were the number of white blood cells (hazard ratio [HR] 1.67; 95% confidence interval [CI] 1.24 to 2.25; p<0.001), monocyte number (HR 0.02; 95% CI 0.00 to 0.21; p = 0.001), and red blood cell distribution width (RDW) (HR 1.44; 95% CI 1.17 to 1.78; p<0.001). RDW was the only significant factor in receiver operating characteristic curve analysis (area under the curve 0.644; CI 0.51 to 0.76; p = 0.046). RDW>16.2% was associated with a significantly reduced AVF patency frequency 24 months after surgery. Immunohistochemical analysis revealed CD45-positive cells in the artery/vein of 39% of patients and CD68-positive cells in 37%. Patients with CD68-positive cells in the vessels had significantly higher white blood cell count. We conclude that RDW, a readily available laboratory value, is a novel prognostic marker for AVF failure. Further studies are warranted to establish the mechanistic link between high RDW and AVF failure

    Functional kinomics establishes a critical node of volume-sensitive cation-Cl<sup>-</sup> cotransporter regulation in the mammalian brain

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.There is another record in ORE for this publication: http://hdl.handle.net/10871/33424Cell volume homeostasis requires the dynamically regulated transport of ions across the plasmalemma. While the ensemble of ion transport proteins involved in cell volume regulation is well established, the molecular coordinators of their activities remain poorly characterized. We utilized a functional kinomics approach including a kinome-wide siRNA-phosphoproteomic screen, a high-content kinase inhibitor screen, and a kinase trapping-Orbitrap mass spectroscopy screen to systematically identify essential kinase regulators of KCC3 Thr991/Thr1048 phosphorylation – a key signaling event in cell swelling-induced regulatory volume decrease (RVD). In the mammalian brain, we found the Cl−-sensitive WNK3-SPAK kinase complex, required for cell shrinkage-induced regulatory volume decrease (RVI) via the stimulatory phosphorylation of NKCC1 (Thr203/Thr207/Thr212), is also essential for the inhibitory phosphorylation of KCC3 (Thr991/Thr1048). This is mediated in vivo by an interaction between the CCT domain in SPAK and RFXV/I domains in WNK3 and NKCC1/KCC3. Accordingly, genetic or pharmacologic WNK3-SPAK inhibition prevents cell swelling in response to osmotic stress and ameliorates post-ischemic brain swelling through a simultaneous inhibition of NKCC1-mediated Cl− uptake and stimulation of KCC3-mediated Cl− extrusion. We conclude that WNK3-SPAK is an integral component of the long-sought “Cl−/volume-sensitive kinase” of the cation-Cl− cotransporters, and functions as a molecular rheostat of cell volume in the mammalian brain.We thank the excellent technical support of the MRC-Protein Phosphorylation and Ubiquitylation Unit (PPU) DNA Sequencing Service (coordinated by Nicholas Helps), the MRC-PPU tissue culture team (coordinated by Laura Fin), the Division of Signal Transduction Therapy (DSTT) antibody purification teams (coordinated by Hilary McLauchlan and James Hastie). We are grateful to the MRC PPU Proteomics facility (coordinated by David Campbell, Robert Gourlay and Joby Varghese). We thank for support the Medical Research Council (MC_UU_12016/2; DRA) and the pharmaceutical companies supporting the Division of Signal Transduction Therapy Unit (AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck KGaA, Janssen Pharmaceutica and Pfizer; DRA). We thank Thomas J. Jentsch (Max-Delbrück-Centrum für Molekulare Medizin) for providing the KCC1/3 double KO mice and his reading of this manuscript. We thank Nathaniel Grey (Harvard) for providing the kinase inhibitor library used in this study (NIH LINCS Program grant U54HL127365). This work was also supported by a Harvard-MIT Neuroscience Grant (to KTK/SJE)

    A proposed new bacteriophage subfamily: “Jerseyvirinae”

    Get PDF
    © 2015, Springer-Verlag Wien. Based on morphology and comparative nucleotide and protein sequence analysis, a new subfamily of the family Siphoviridae is proposed, named “Jerseyvirinae” and consisting of three genera, “Jerseylikevirus”, “Sp3unalikevirus” and “K1glikevirus”. To date, this subfamily consists of 18 phages for which the genomes have been sequenced. Salmonella phages Jersey, vB_SenS_AG11, vB_SenS-Ent1, vB_SenS-Ent2, vB_SenS-Ent3, FSL SP-101, SETP3, SETP7, SETP13, SE2, SS3e and wksl3 form the proposed genus “Jerseylikevirus”. The proposed genus “K1glikevirus” consists of Escherichia phages K1G, K1H, K1ind1, K1ind2 and K1ind3. The proposed genus “Sp3unalikevirus” contains one member so far. Jersey-like phages appear to be widely distributed, as the above phages were isolated in the UK, Canada, the USA and South Korea between 1970 and the present day. The distinguishing features of this subfamily include a distinct siphovirus morphotype, genomes of 40.7-43.6kb (49.6-51.4mol% G+C), a syntenic genome organisation, and a high degree of nucleotide sequence identity and shared proteins. All known members of the proposed subfamily are strictly lytic

    Investigation of relationship between vitamin D status and reproductive fitness in Scottish hill sheep

    Get PDF
    There is a growing interest in the influence of vitamin D on ovine non-skeletal health. The aim of this study was to explore the relationship between pre-mating vitamin D status, as assessed by serum concentrations of 25-Hydroxyvitamin D [25(OH)D; comprising D2 and D3] and subsequent reproductive performance of genetically unimproved Scottish Blackface (UBF), genetically improved Scottish Blackface (IBF) and Lleyn ewes kept under Scottish hill conditions. 25-Hydroxyvitamin D2 (25(OH)D2) and 25-Hydroxyvitamin D3 (25(OH)D3) concentrations were determined in serum samples harvested in November from ewes grazed outdoors. There were no significant differences in 25(OH)D2concentrations amongst the 3 genotypes. Lleyn ewes had significantly higher 25(OH)D3 and 25(OH)D concentrations than both Scottish Blackface ewe genotypes, whereas these vitamin D parameters did not differ significantly between the UBF and IBF ewes. Concentrations of 25(OH)D3 and 25(OH)D were positively associated with subsequent birth weights of singleton and of twin lamb litters. No significant associations between vitamin D status and number of lambs born or weaned per ewe were found. This study demonstrates that concentrations of cutaneously-derived 25(OH)D3, but not of orally consumed 25(OH)D2, differed between breeds. The positive association between ewe vitamin D status and offspring birth weight highlights the need for further investigations

    Increased fracture rate in women with breast cancer: a review of the hidden risk

    Get PDF
    Women with breast cancer, particularly individuals diagnosed at a relatively early age, have an increased incidence of fractures. Fractures can have serious clinical consequences including the need for major surgery, increased morbidity and mortality, increased cost of disease management, and reduced quality of life for patients. The primary cause of the increased fracture risk appears to be an accelerated decrease in bone mineral density (BMD) resulting from the loss of estrogenic signaling that occurs with most treatments for breast cancer, including aromatase inhibitors. However, factors other than BMD levels alone may influence treatment decisions to reduce fracture risk in this setting. Our purpose is to review current evidence for BMD loss and fracture risk during treatment for breast cancer and discuss pharmacologic means to reduce this risk.Journal ArticleResearch Support, Non-U.S. Gov'tReviewSCOPUS: re.jinfo:eu-repo/semantics/publishe
    corecore