258 research outputs found

    Variance-constrained dissipative observer-based control for a class of nonlinear stochastic systems with degraded measurements

    Get PDF
    The official published version of the article can be obtained from the link below.This paper is concerned with the variance-constrained dissipative control problem for a class of stochastic nonlinear systems with multiple degraded measurements, where the degraded probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution over a given interval. The purpose of the problem is to design an observer-based controller such that, for all possible degraded measurements, the closed-loop system is exponentially mean-square stable and strictly dissipative, while the individual steady-state variance is not more than the pre-specified upper bound constraints. A general framework is established so that the required exponential mean-square stability, dissipativity as well as the variance constraints can be easily enforced. A sufficient condition is given for the solvability of the addressed multiobjective control problem, and the desired observer and controller gains are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programming method. Finally, a numerical example is presented to show the effectiveness and applicability of the proposed algorithm.This work was supported in part by the Distinguished Visiting Fellowship of the Royal Academy of Engineering of the UK, the Royal Society of the UK, the GRF HKU 7137/09E, the National Natural Science Foundation of China under Grant 61028008, the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, and the Alexander von Humboldt Foundation of Germany

    Concentration and localization of zinc during seed development and germination in wheat

    Get PDF
    In a field experiment, the effect of foliar Zn applications on the concentration of Zn in seeds of a bread wheat cultivar (Triticum aestivum L. cv. Balatilla) was studied during different stages of seed development. In addition, a staining method using dithizone (DTZ: diphenyl thiocarbazone) was applied to (1) study the localization of Zn in seeds, (2) follow the remobilization of Zn during germination, and (3) develop a rapid visual Zn screening method for seed and flour samples. In all seed development stages, foliar Zn treatments were effective in increasing seed Zn concentration. The highest Zn concentration in the seeds was found in the first stage of seed development (around the early milk stage); after this, seed Zn concentration gradually decreased until maturity. When reacting with Zn, DTZ forms a redcolored complex. The DTZ staining of seed samples revealed that Zn is predominantly located in the embryo and aleurone parts of the seeds. After 36 h of germination, the coleoptile and roots that emerged from seeds showed very intensive red color formation and had Zn concentrations up to 200 mg kg1, indicating a substantial remobilization of Zn from seed pools into the developing roots (radicle) and coleoptile. The DTZ staining method seems to be useful in ranking flour samples for their Zn concentrations. There was a close relationship between the seed Zn concentrations and spectral absorbance of the methanol extracts of the flour samples stained with DTZ. The results suggest that (1) accumulation of Zn in seeds is particularly high during early seed development, (2) Zn is concentrated in the embryo and aleurone parts, and (3) the DTZ staining method can be used as a rapid, semiquantitative method to estimate Zn concentrations of flour and seed samples and to screen genotypes for their Zn concentrations in seeds

    Zinc biofortification of rice in China: a simulation of zinc intake with different dietary patterns

    Get PDF
    A cross-sectional survey of 2819 adults aged 20 years and above was undertaken in 2002 in Jiangsu Province. Zinc intake was assessed using a consecutive 3-day 24-h dietary recall method. Insufficient and excess intake was determined according to the Chinese Dietary Recommended Intakes. Four distinct dietary patterns were identified namely “traditional”, “macho”, “sweet tooth”, and “healthy”. Intake of zinc from biofortified rice was simulated at an intermediate zinc concentration (2.7 mg/100 g) and a high zinc concentration (3.8 mg/100 g) in rice. Average total zinc intake was 12.0 ± 3.7 mg/day, and insufficiency of zinc intake was present in 15.4%. Simulated zinc intake from biofortified rice with intermediate and high zinc concentration decreased the prevalence of low zinc intake to 6.5% and 4.4%, respectively. The effect was most pronounced in the “traditional” pattern, with only 0.7% of insufficiency of zinc intake remaining in the highest quartile of the pattern. Zinc intake was inversely associated with the “sweet tooth” pattern. Zinc biofortifed rice improves dietary zinc intake and lowers risk for insufficient zinc intake, especially for subjects with a more “traditional” food pattern, but less for subjects with a “sweet tooth” food pattern.Yu Qin, Alida Melse-Boonstra, Baojun Yuan, Xiaoqun Pan, Yue Dai, Minghao Zhou, Rita Wegmueller, Jinkou Zhao, Frans J. Kok and Zumin Shihttp://arxiv.org/abs/arXiv:1205.001

    Characteristics of transposable element exonization within human and mouse

    Get PDF
    Insertion of transposed elements within mammalian genes is thought to be an important contributor to mammalian evolution and speciation. Insertion of transposed elements into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization. Elucidation of the evolutionary constraints that have shaped fixation of transposed elements within human and mouse protein coding genes and subsequent exonization is important for understanding of how the exonization process has affected transcriptome and proteome complexities. Here we show that exonization of transposed elements is biased towards the beginning of the coding sequence in both human and mouse genes. Analysis of single nucleotide polymorphisms (SNPs) revealed that exonization of transposed elements can be population-specific, implying that exonizations may enhance divergence and lead to speciation. SNP density analysis revealed differences between Alu and other transposed elements. Finally, we identified cases of primate-specific Alu elements that depend on RNA editing for their exonization. These results shed light on TE fixation and the exonization process within human and mouse genes.Comment: 11 pages, 4 figure

    Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat 3 wild emmer wheat RIL population

    Get PDF
    Mineral nutrient malnutrition, and particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, genepool harbors a rich allelic repertoire for mineral nutrients in the grain. The genetic and physiological basis of grain protein, micronutrients (zinc, iron, copper and manganese) and macronutrients (calcium, magnesium, potassium, phosphorus and sulfur) concentration was studied in tetraploid wheat population of 152 recombinant inbred lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Wide genetic variation was found among the RILs for all grain minerals, with considerable transgressive effect. A total of 82 QTLs were mapped for 10 minerals with LOD score range of 3.2–16.7. Most QTLs were in favor of the wild allele (50 QTLs). Fourteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. Significant positive correlation was found between grain protein concentration (GPC), Zn, Fe and Cu, which was supported by significant overlap between the respective QTLs, suggesting common physiological and/or genetic factors controlling the concentrations of these mineral nutrients. Few genomic regions (chromosomes 2A, 5A, 6B and 7A) were found to harbor clusters of QTLs for GPC and other nutrients. These identified QTLs may facilitate the use of wild alleles for improving grain nutritional quality of elite wheat cultivars, especially in terms of protein, Zn and Fe

    Robust filtering for a class of nonlinear stochastic systems with probability constraints

    Get PDF
    This paper is concerned with the probability-constrained filtering problem for a class of time-varying nonlinear stochastic systems with estimation error variance constraint. The stochastic nonlinearity considered is quite general that is capable of describing several well-studied stochastic nonlinear systems. The second-order statistics of the noise sequence are unknown but belong to certain known convex set. The purpose of this paper is to design a filter guaranteeing a minimized upper-bound on the estimation error variance. The existence condition for the desired filter is established, in terms of the feasibility of a set of difference Riccati-like equations, which can be solved forward in time. Then, under the probability constraints, a minimax estimation problem is proposed for determining the suboptimal filter structure that minimizes the worst-case performance on the estimation error variance with respect to the uncertain second-order statistics. Finally, a numerical example is presented to show the effectiveness and applicability of the proposed method

    Zinc status and its association with the health of adolescents: a review of studies in India

    Get PDF
    Background: Zinc is important in adolescence because of its role in growth and sexual maturation. Adolescents from developing countries such as India may be at high risk of zinc deficiency because of unwholesome food habits and poor bioavailability of zinc from plant-based diets. Objectives: (1) to study zinc status and its association with profile of other micronutrients, (2) to construct a simple tool in the form of Adolescent Micronutrient Quality Index (AMQI) to assess quality of diets of the girls and (3) to examine the effect of zinc supplement on health of adolescent girls. Methods: Girls (10–16 years) from two secondary schools of Pune, Maharashtra state, in Western India were enrolled in a cross-sectional study (n = 630). Data were collected on dietary intake, cognitive performance, taste acuity, haemoglobin, erythrocyte zinc and plasma levels of zinc, vitamin C, β-carotene and retinol. AMQI was developed using age–sex-specific Indian dietary guidelines and healthy foods and habits described in the recent US dietary guidelines. Zinc-rich recipes were developed considering habitual diets of the girls and vegetarian sources of zinc. An intervention trial (n = 180) was conducted to assess the effect of zinc-rich dietary supplements and ayurvedic zinc (Jasad) supplementation. Results: Prevalence of micronutrient deficiencies was high in these girls. Poor cognitive performance was seen in half of the girls, and salt taste perception was affected in 45%. AMQI was correlated with nutrient intakes and blood micronutrient levels (p < 0.01), indicating the potential of AMQI to measure micronutrient quality of diets of adolescent girls. Results of the intervention trial indicated that supplementation of zinc-rich recipes vis-a-vis ayurvedic Jasad zinc has the potential to improve plasma zinc status, cognitive performance and taste acuity in adolescent girls. Conclusion: Review of the studies on Indian adolescent girls demonstrates the necessity of adopting zinc and micronutrient-rich diets for positive health building in adolescents

    Apoptosis is associated with triacylglycerol accumulation in Jurkat T-cells

    Get PDF
    Magnetic resonance spectroscopy is increasingly used as a non-invasive method to investigate apoptosis. Apoptosis was induced in Jurkat T-cells by Fas mAb. 1H magnetic resonance spectra of live cells showed an increase in methylene signal as well as methylene/methyl ratio of fatty acid side chains at 5 and 24 h following induction of apoptosis. To explain this observation, 1H magnetic resonance spectra of cell extracts were investigated. These demonstrated a 70.0±7.0%, 114.0±8.0% and 90.0±5.0% increase in the concentration of triacylglycerols following 3, 5 and 7 h of Fas mAb treatment (P<0.05). Confocal microscopy images of cells stained with the lipophilic dye Nile Red demonstrated the presence of lipid droplets in the cell cytoplasm. Quantification of the stained lipids by flow cytometry showed a good correlation with the magnetic resonance results (P⩾0.05 at 3, 5 and 7 h). 31P magnetic resonance spectra showed a drop in phosphatidylcholine content of apoptosing cells, indicating that alteration in phosphatidylcholine metabolism could be the source of triacylglycerol accumulation during apoptosis. In summary, apoptosis is associated with an early accumulation of mobile triacylglycerols mostly in the form of cytoplasmic lipid droplets. This is reflected in an increase in the methylene/methyl ratio which could be detected by magnetic resonance spectroscopy
    corecore