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Variance-Constrained Dissipative Observer-Based

Control for A Class of Nonlinear Stochastic Systems

with Degraded Measurements
Zidong Wanga,∗, James Lamb, Lifeng Mac, Yuming Boc and Zhi Guoc

Abstract

This paper is concerned with the variance-constrained dissipative control problem for a class of stochastic nonlinear

systems with multiple degraded measurements, where the degraded probability for each sensor is governed by an indi-

vidual random variable satisfying a certain probabilistic distribution over a given interval. The purpose of the problem

is to design an observer-based controller such that, for all possible degraded measurements, the closed-loop system is

exponentially mean-square stable and strictly dissipative, while the individual steady-state variance is not more than

the pre-specified upper bound constraints. A general framework is established so that the required exponential mean-

square stability, dissipativity as well as the variance constraints can be easily enforced. A sufficient condition is given

for the solvability of the addressed multiobjective control problem, and the desired observer and controller gains are

characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi-

definite programming method. Finally, a numerical example is presented to show the effectiveness and applicability of

the proposed algorithm.
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I. Introduction

In stochastic control problems, it is often the case that the performance requirements of engineering systems

are expressed as upper bounds on the steady-state variances, see e.g. [14,24]. Current control design techniques,

such as LQG and H∞ design, do not seem to give a direct solution to this kind of design problem since they

lack a convenient avenue for imposing design objectives stated in terms of upper bounds on the variance values.

For example, the LQG controllers minimize a linear quadratic performance index without guaranteeing the

variance constraints with respect to individual system states. The covariance control theory [14] developed

in late 80’s has provided a more direct methodology for achieving the individual variance constraints than

the LQG control theory. Covariance control theory is capable of dealing with variance-constrained control

problems and, at the same time, considering other multiple performance objectives due to its design flexibility.

Therefore, the idea of covariance control theory has been widely applied in solving multiobjective control

problems as well as filtering problems, see [2, 16,25,33,35] for instance.
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In recent years, there has been an increasing research interest on controller/filter design problems with

variance constraints and several approaches have been developed. For example, in [16], a Riccati-equation

method has been proposed to solve the filtering problem for linear time-varying stochastic systems with pre-

specified error variance bounds. In [2], the sliding mode control (SMC) method has been applied to solve the

robust controller design problems for linear parameter perturbed systems, since SMC has certain robustness

to matched disturbances or parameter perturbations. It should be pointed out that most available literature

has been concerned with linear stochastic systems [25,26] with the linear matrix inequality (LMI) approach.

As far as nonlinear stochastic systems are concerned, unfortunately, the relevant results have been very few

mainly due to the complexity in dealing with the existence and expression of the steady-state variance for

nonlinear stochastic systems.

In the context of multiobjective stochastic control, there have appeared several results in the literature.

For example, a multiobjective filter has been designed in [21] for systems with Lipschitz-type nonlinearity,

but the variance bounds cannot be pre-specified. An LMI approach has been proposed in [33] to cope with

robust control and filtering problems for a class of stochastic nonlinear systems by achieving H2 performance

indices. In [24], for a special class of nonlinear stochastic systems, namely, systems with multiplicative noises

(also called bilinear systems or systems with state/control dependent noises), a state feedback controller has

been put forwarded in a unified LMI framework in order to ensure that the multiple objectives (including the

variance constraint) are simultaneously satisfied.

On another research front, the theory of dissipative systems, which plays an important role in system and

control areas, has been attracting a great deal of research interests and many results have been reported so far,

see [4, 12, 18, 22, 30, 31]. Originated in [30], the dissipative theory serves as a powerful tool in characterizing

important system behaviors such as stability and passivity, and has close connections with bounded real

lemma, passitivity lemma and circle criterion. It is worth mentioning that, due to its simplicity in analysis

and convenience in simulation, the LMI method has gained particular attention in dissipative control problems.

For example, in [22, 31], an LMI method was used to design the state feedback controller ensuring both the

asymptotic stability and strictly quadratic dissipativity. For singular systems, [4] established a unified LMI

framework to satisfy admissibility and dissipativity of the system simultaneously. In [18], the dissipative

control problem was solved for time-delay systems.

In engineering systems, it is always desirable for the controlled systems to achieve multiple performance

indices such as stability, robustness, dissipativity and steady-state variance. Therefore, a seemingly natural

research problem arises here: can we handle the robust variance-constrained dissipative control problem for

uncertain stochastic systems with general nonlinearities? To the best of the author’s knowledge, such a

multiobjective research problem has not received any attention despite its theoretical significance, and this

constitutes the main motivation of our current investigation. The main features/contributions of this paper

can be described as follows. (1) For the first time, the stochastic dissipativity is combined with the steady-state

variance in a stochastic control problem, which serve as two important performance requirements for a class of

uncertain nonlinear stochastic systems. The trade-off between these two requirements are investigated in detail

by means of a convex optimization approach. (2) Compared with existing literature that uses measurement

outputs for dissipative control design, this paper considers the multiple packet-dropout model which describes

the phenomenon of measurement degraded occurred frequently in practical applications (for example, the

target tacking problem). As such, the system model studied reflects practical engineering systems in a more

comprehensive and realistic way.
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The rest of the paper is organized as follows. In Section II, the multiobjective control problem is formulated

for a class of nonlinear stochastic systems. In Section III, the stability, dissipativity and steady state variance

are analyzed one by one. In Section IV, an LMI algorithm is developed for controller design. In Section

V, an illustrative example is presented to show the effectiveness of the proposed algorithm. In Section VI,

concluding remarks are provided.

Notation The following notation will be used in this paper. R
n and R

n×m denote, respectively, the n-

dimensional Euclidean space and the set of all n×m matrices, and I
+ denotes the set of nonnegative integers.

The notation X ≥ Y (respectively X > Y ) where X and Y are real symmetric matrices, means that X − Y

is positive semi-definite (respectively positive definite). E{x} stands for the expectation of stochastic variable

x and E{x|y} for the expectation of x conditional on y. The superscript “T” denotes the transpose. ρ(A)

means the spectral radius of matrix A, while tr(A) the trace of matrix A. vec(A) represents stack or vector

operator (operator which forms a vector out of the columns of a matrix) applied on A. ⊗ stands for the

Kronecker product of matrices. diag{F1, F2, . . . , Fm} denotes a block diagonal matrix whose diagonal blocks

are given by F1, F2, . . . , Fm.

II. Problem Formulation

Consider the following discrete-time nonlinear stochastic system:

{

x(k + 1) = Ax(k) +B1u(k) + f(x(k)) +D1ω(k)

z(k) = Lx(k) +B2u(k) +D2ω(k)
(1)

with the measurement equation

y(k) = ΘCx(k) + g(x(k)) +D3ω(k)

=
m∑

j=1

θjCjx(k) + g(x(k)) +D3ω(k)
(2)

where x(k) ∈ R
n is the system state, u(k) ∈ R

p is the control input, z(k) ∈ R
r is the controlled output,

y(k) ∈ R
m is the measured output vector, ω(k) ∈ R

r is a zero mean Gaussian white noise sequence with

covarianceW > 0. A, B1, B2, D1, D2, D3, C, L are known real constant matrices with appropriate dimensions.

The stochastic matrix Θ describes the phenomenon of multiple measurement degraded in the process of

information retrieval from the sensor output. Θ is defined as

Θ = diag{θ1, θ2, . . . , θm} (3)

with θj(j = 1, 2, . . . ,m) being m independent random variables which are also independent from ω(k). It is

assumed that θj has the probabilistic density function pi(s) on the interval [0, 1] with mathematical expectation

θ̄j and variance σ2j . Cj , diag{0, . . . , 0
︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0
︸ ︷︷ ︸

m−j

}C.

Remark 1: It has been illustrated in [29] that the description of measurements degraded phenomenon given

in (3) is much more general than those in most previous literature where the data missing phenomenon is

simply modeled by a single Bernoulli sequence [26, 34]. In such a model, when θj = 1, it means that the jth

sensor is in good condition, otherwise there might be partial or complete sensor failure. To be specific, when

θjk = 0, the sensor is totally out of work and the measurements are completely missing, while 0 < θjk < 1

means that we could only measure the output signals with reduced gains, namely, degraded measurements. In
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this sense, the model (1)–(2) offers a comprehensive means to reflect systems complexity such as nonlinearities,

stochasticity and data degraded from multiple sensors.

The nonlinear stochastic functions f(x(k)) and g(x(k)) are assumed to have the following first moments for

all x(k):

E

{[

f(x(k))

g(x(k))

] ∣
∣
∣
∣
∣
x(k)

}

= 0, (4)

with the covariance given by

E

{[

f(x(k))

g(x(k))

]
[

fT(x(j)) gT(x(j))
]
∣
∣
∣
∣
∣
x(k)

}

= 0, k 6= j (5)

and

E

{[

f(x(k))

g(x(k))

]
[

fT(x(k)) gT(x(k))
]
∣
∣
∣
∣
∣
x(k)

}

=

q
∑

i=1

Πix
T(k)Γix(k), (6)

where Πi and Γi (i = 1, 2, . . . , q) are known positive-definite matrices with appropriate dimensions.

Remark 2: As discussed in [33, 36], the stochastic nonlinearity described by (4)–(6) accounts for several

classes of well-studied nonlinear systems, such as the system with state-dependent multiplicative noises and

the system whose state has power dependent on the sector-bounded (or sign) of the nonlinear state function

of the state.

For system (1), consider the following observer-based controller:

x̂(k + 1) = Af x̂(k) +Hfy(k) (7)

u(k) = Kx̂(k) (8)

where Af and Hf (observer parameters) and K (controller parameter) are to be determined.

From (1), (7) and (8), we obtain the following augmented system:

{

ξ(k + 1) = Āξ(k) + H̄h(x(k)) + D̄ω(k)

z(k) = L̄ξ(k) +D2ω(k)
(9)

where

ξ(k) =

[

x(k)

x̂(k)

]

, Ā =

[

A B1K

HfΘC Af

]

, H̄ =

[

I 0

0 Hf

]

, D̄ =

[

D1

HfD3

]

,

L̄ =
[

L B2K
]

, h(x(k)) =

[

f(x(k))

g(x(k))

]

.

Definition 1: [24] System (9) is said to be exponentially mean square stable if, with ω(k) = 0, there exist

constants ρ > 1 and τ ∈ (0, 1) such that

E{‖ξ(k)‖2} 6 ρτkE{‖ξ(0)‖2}, ∀ξ(0) ∈ R
2n, k ∈ I

+ (10)

for all possible degraded measurements.

We are now in a position to introduce the performance of dissipativity. Let the energy supply function of

system (1) be defined by

G(ω, z, T ) = 〈z,Qz〉T + 2〈z, Sω〉T + 〈ω,Rω〉T , ∀T > 0 (11)
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where Q, S and R are real matrices with Q, R symmetric, T > 0 is an integer and 〈a, b〉T ,
∑T

k=0 a
T(k)b(k).

Without loss of generality, we assume that Q < 0 and denote Q̄ =
√−Q.

Definition 2: [4] Closed-loop system (9) is said to be strictly (Q,R, S) dissipative if, for some scalar γ > 0,

the following inequality

G(ω, z, T ) > γ〈ω, ω〉T , ∀T > 0 (12)

holds under zero initial condition.

If system (1) is asymptotically stable, its steady-state covariance is defined as follows:

X̄ , lim
k→∞

E{x(k)xT(k)}. (13)

Assumption 1: The matrices Πi and Γi in (6) have the following form:

Πi = π̄iπ̄
T
i =

[

π1i

π2i

][

π1i

π2i

]T

, Γi = ηiη
T
i (14)

where πi1, π2i and ηi (i = 1, 2, . . . , i) are known vectors with appropriate dimensions.

This paper aims to determine the observer parameters Af , Hf and the feedback controller parameter K for

the system (1) such that, for all possible degraded measurements , the following three objectives are achieved

simultaneously:

(R1) Augmented system (9) is exponentially mean square stable;

(R2) Augmented system (9) is strictly (Q,S,R) dissipative;

(R3) The steady-state variance for each individual state of system (1) satisfies

X̄s 6 δ2s , s = 1, 2, . . . , n (15)

where X̄s stands for the steady-state variance for the sth state, and δ2s denotes the pre-specified steady-state

variance constraint on the sth state.

III. Stability, Dissipativity and Variance Analysis

Before giving our preliminary results, let us introduce some useful lemmas. For presentation convenience,

we denote

Â ,

[

A B1K

Hf Θ̄C Af

]

, Ă ,

[

0 0

Hf (Θ− Θ̄)C 0

]

,

Ãi ,

[

0 0

HfCi 0

]

, Γ̄i ,

[

ηi

0

][

ηi

0

]T

, η̄iη̄
T
i , Θ̄ , E{Θ}.

Lemma 1: [23] Let V (ξ(k)) = ξT(k)Xξ(k) be a Lyapunov functional where X > 0. If there exist real

scalars λ, µ > 0, ν > 0 and 0 < ψ < 1 such that both

µ‖ξ(k)‖2 6 V (ξ(k)) 6 ν‖ξ(k)‖2 (16)

and

E{V (ξ(k + 1))|ξ(k)} − V (ξ(k)) 6 λ− ψV (ξ(k)) (17)

hold, then the process ξ(k) satisfies

E{‖ξ(k)‖2} 6
ν

µ
‖ξ(0)‖2(1− ψ)k +

λ

µψ
. (18)



FINAL VERSION 6

Lemma 2: (Schur Complement Equivalence) Given constant matrices S1,S2,S3 where S1 = ST
1 and 0 <

S2 = ST
2 , then S1 + ST

3 S−1
2 S3 < 0 if and only if

[

S1 ST
3

S3 −S2

]

< 0 or

[

−S2 S3

ST
3 S1

]

< 0. (19)

Lemma 3: Given the parameters Af , Hf and K. The following statements are equivalent:

1)

ρ



ÂT ⊗ ÂT +
m∑

j=1

σ2j Ã
T
j ⊗ ÃT

j +

q
∑

i=1

vec(Γ̄i)vec
T(H̄ΠiH̄

T)



 < 1 (20)

or

ρ



Â⊗ Â+

m∑

j=1

σ2j Ãj ⊗ Ãj +

q
∑

i=1

vec(H̄ΠiH̄
T)vecT(Γ̄i)



 < 1 (21)

2) There exists a positive definite matrix X > 0 such that

ÂTXÂ+

m∑

j=1

σ2j Ã
T
j XÃj +

q
∑

i=1

Γ̄itr[XH̄ΠiH̄
T]−X < 0 (22)

3) There exists a positive definite matrix Y > 0 such that

ÂY ÂT +
m∑

j=1

σ2j ÃjY Ã
T
j +

q
∑

i=1

H̄ΠiH̄
Ttr[Γ̄iY ]− Y < 0 (23)

4) System (9) is exponentially mean square stable.

The proof of Lemma 2 can be carried out along the similar line of that of Lemma 2 of [19] and is therefore

omitted. The main difference between this lemma and Theorem 1 of [36] is that the state matrix of system

(9) involves the stochastic variable Θ which describes probabilistic degraded measurements.

The following theorem gives a sufficient condition for the exponential mean-square stability as well as strictly

(Q,S,R) dissipativity of the system (9).

Theorem 1: Given the parameters Af , Hf , K, symmetric matrices Q, R and a matrix S. The closed-loop

system (9) is exponentially mean-square stable and strictly (Q,S,R) dissipative if there exists a matrix X > 0

such that the following matrix inequality holds:

Ω ,

[

Ω11 ÂTXD̄ − L̄TQD2 − L̄TS

∗ D̄TXD̄ −DT
2 QD2 −DT

2 S − STD2 −R

]

< 0 (24)

where

Ω11 , ÂTXÂ+
m∑

j=1

σ2j Ã
T
j XÃj +

q
∑

i=1

Γ̄itr[XH̄ΠiH̄
T]−X − L̄TQL̄.

Proof: First, it follows from (24) that

ÂTXÂ+

m∑

j=1

σ2j Ã
T
j XÃj +

q
∑

i=1

Γ̄itr[XH̄ΠiH̄
T]−X < L̄TQL̄ < 0. (25)

Therefore, from Lemma 3, system (9) is exponentially mean-square stable.
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When ω(k) 6= 0, we obtain from (24) that

E
{
V (ξ(k + 1))

∣
∣ξ(k)

}
− V (ξ(k)) − zT(k)Qz(k) − 2zT(k)Sω(k) − ωT(k)Rω(k)

=E
{
(Āξ(k) + H̄h(x(k)) + D̄ω(k))TX(Āξ(k) + H̄h(x(k)) + D̄ω(k))|ξ(k)

}
− ξT(k)Xξ(k)

−(L̄ξ(k) +D2ω(k))
TQ(L̄ξ(k) +D2ω(k))− 2(L̄ξ(k) +D2ω(k))

TSω(k)− ωT(k)Rω(k)

=

[

ξ(k)

ω(k)

]T

Ω

[

ξ(k)

ω(k)

]

< 0.

(26)

Obviously, there always exists a sufficiently small positive scalar γ > 0 such that

Ω + diag{0, γI} < 0 (27)

and therefore

E
{
V (ξ(k + 1))

∣
∣ξ(k)

}
− V (ξ(k)) + γωT(k)ω(k) < zT(k)Qz(k) + 2zT(k)Sω(k) + ωT(k)Rω(k). (28)

Summing (28) from 0 to T with respect to k on both sides, and noticing that V (ξ(T + 1)) > 0 and

V (ξ(0)) = 0, it can be obtained that

G(ω, z, T ) > γ〈ω, ω〉T (29)

which implies that the system (9) is strictly (Q,S,R) dissipative. The proof is complete.

Now, let us proceed to analyze the steady-state covariance of the system (9). Define the state covariance

of system (9) as

Y (k) , E
{
ξ(k)ξT(k)

}
. (30)

The evolution of Y (k) can be derived as follows:

Y (k + 1) = ÂY (k)ÂT +
m∑

j=1

σ2j ÃjY (k)ÃT
j +

q
∑

i=1

H̄ΠiH̄
Ttr[Γ̄iY (k)] + D̄WD̄T. (31)

Furthermore, define the steady-state covariance as

Ȳ , lim
k→∞

Y (k). (32)

The following theorem presents a sufficient condition that guarantees the exponentially mean-square stability

of system (9) and, at the same time, gives an upper bound of the steady-state covariance.

Theorem 2: Given the parameters Af , Hf and K. If there exists a matrix Y > 0 such that

ÂY ÂT +

m∑

j=1

σ2j ÃjY Ã
T
j +

q
∑

i=1

H̄ΠiH̄
Ttr(Γ̄iY )− Y + D̄WD̄T < 0, (33)

then system (9) is exponentially mean square stable. Moreover, the steady-state covariance defined in (32)

exists and satisfies Ȳ 6 Y .

Proof: First of all, matrix inequality (33) indicates that

ÂY ÂT +
m∑

j=1

σ2j ÃjY Ã
T
j +

q
∑

i=1

H̄ΠiH̄
Ttr(Γ̄iY )− Y < −D̄WD̄T < 0 (34)
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and therefore it follows from Lemma 3 that system (9) is exponentially mean-square stable. Rewrite equation

(31) into the following form:

vec(Y (k + 1)) =



Â⊗ Â+

m∑

j=1

σ2j Ãj ⊗ Ãj +

q
∑

i=1

vec(H̄ΠiH̄
T)vecT(Γ̄i)



 st(Y (k)) + st(D̄WD̄T). (35)

From Lemma 3, the exponentially mean-square stability of system (9) ensures that the inequality (21) holds,

which implies the convergence of the covariance Y (k) to the constant matrix Ȳ when k → ∞, that is

−Ȳ + ÂȲ ÂT +
m∑

j=1

σ2j Ãj Ȳ Ã
T
j +

q
∑

i=1

H̄ΠiH̄
Ttr(Γ̄iȲ ) + D̄WD̄T = 0. (36)

Subtracting (36) from (33), we obtain

−(Y − Ȳ ) + Â(Y − Ȳ )ÂT +

m∑

j=1

σ2j Ãj(Y − Ȳ )ÃT
j +

q
∑

i=1

H̄ΠiH̄
Ttr[Γ̄i(Y − Ȳ )] < 0. (37)

In the following stage, we need to prove that Ỹ , Y − Ȳ > 0. For this purpose, let us first prove the fact that

if system (9) is exponentially mean square stable and there exists a symmetric matrix X̃ such that

ÂTX̃Â+
m∑

j=1

σ2j Ã
T
j X̃Ãj +

q
∑

i=1

Γ̄itr(X̃H̄ΠiH̄
T)− X̃ < 0, (38)

then X̃ > 0. In fact, if (38) holds, then there always exists a matrix Ξ > 0 satisfying

ÂTX̃Â+

m∑

j=1

σ2j Ã
T
j X̃Ãj +

q
∑

i=1

Γ̄itr(X̃H̄ΠiH̄
T)− X̃ = −Ξ. (39)

Using the functional V (ξ(k)) = ξT(k)X̃ξ(k) for (9), we obtain

E
{
V (ξ(k + 1))

∣
∣ξ(k)

}
− V (ξ(k))

=ξT(k)



ÂTX̃Â+

m∑

j=1

σ2j Ã
T
j X̃Ãj +

q
∑

i=1

Γ̄itr(X̃H̄ΠiH̄
T)− X̃



 ξ(k) = −ξT(k)ΞξT(k).
(40)

Taking sum on both sides of (40) with respect to k from 0 to ∞ results in

lim
n→∞

E

[

ξT(n)X̃ξ(n)
]

− ξT(0)X̃ξ(0) = − lim
n→∞

n∑

k=0

ξT(k)Ξξ(k). (41)

Since system (9) is exponentially mean square stable, we have

lim
n→∞

E(ξT(n)X̃ξ(n)) 6 ‖X̃‖ lim
n→∞

ξT(n)ξ(n) = 0. (42)

Therefore, for any nonzero initial state ξ(0), it can be deduced from (41) that

ξT(0)X̃ξ(0) = lim
n→∞

n∑

k=0

ξT(k)Ξξ(k) > 0, (43)

which means X̃ > 0.



FINAL VERSION 9

Now, let us construct an auxiliary system as follows:

ξ̄(k + 1) = ĀTξ̄(k) + h̄(ξ̄(k)) (44)

where h̄(ξ̄(k)) satisfies

E
{
h̄(ξ̄(k))|ξ̄(k)

}
= 0,

E
{
h̄(ξ̄(k))h̄T(ξ̄(j))|ξ̄(k)

}
= 0, k 6= j

E
{
h̄(ξ̄(k))h̄T(ξ̄(k))|ξ̄(k)

}
=

q
∑

i=1

Γ̄iξ̄
T(k)H̄ΠiH̄

Tξ̄(k).

(45)

It follows from the exponentially mean-square stability of system (9) and Lemma 3 that

ρ



ÂT ⊗ ÂT +

m∑

j=1

σ2j Ã
T
j ⊗ ÃT

j +

q
∑

i=1

vec(Γ̄i)vec
T(H̄ΠiH̄

T)



 < 1. (46)

Thus, auxiliary system (44) is also exponentially mean-square stable. Then, from the previously proven fact,

if there exists a symmetric matrix Ỹ such that

(ÂT)TỸ ÂT +

m∑

j=1

σ2j (Ã
T
j )

TỸ ÃT
j +

q
∑

i=1

H̄ΠiH̄
Ttr(Γ̄iỸ )− Ỹ < 0, (47)

it can be concluded that Ỹ > 0. The proof is complete.

Based on the results we have obtained so far concerning the exponentially mean-square stability, dissipative

property as well as steady-state covariance, we are now ready to cope with the addressed multiobjective

controller design problem.

IV. Observer-Based Controller Design

In this section, we will first propose a sufficient condition for the solvability of the addressed problem in

terms of the feasibility of certain constrained LMIs. Then, an algorithm is presented via cone complementarity

linearization method to solve the addressed non-convex optimization problem.

A. Solvability of Multiobjective Control Problem

To begin with, a corollary is given that combines the exponentially mean-square stability, system dissipa-

tivity and steady-state covariance constraints.

Corollary 1: Given the parameters Af , Hf , K, matrices Q, R and S with Q and R being symmetric.

Denote Y0 , diag{δ21 , δ22 , . . . , δ2n} where δ2s (s = 1, 2, . . . , n) are the pre-specified upper bounds of the steady-

state variance of each individual state. If there exist a matrix Y > 0 and scalars αi > 0, βi > 0 satisfying

αiβi = 1 (i = 1, 2, . . . , q) such that
[

I 0
]

Y

[

I

0

]

− Y0 < 0 (48)

[

−α−1
i π̄Ti H̄

T

∗ −Y

]

< 0 (49)

[

−β−1
i η̄Ti Y

∗ −Y

]

< 0 (50)
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









−Y ÂY ĀY Ĥ D̄

∗ −Y 0 0 0

∗ ∗ −Y 0 0

∗ ∗ ∗ −β̄ 0

∗ ∗ ∗ ∗ −W−1











< 0 (51)














−Y −Y (L̄TQD2 − L̄TS) Y ÂT YAT Y η̂ Y L̄TQ̄

∗ −DT
2 QD2 −DT

2 S − STD2 −R D̄T 0 0 0

∗ ∗ −Y 0 0 0

∗ ∗ ∗ −Y 0 0

∗ ∗ ∗ ∗ −ᾱ 0

∗ ∗ ∗ ∗ ∗ −I














< 0 (52)

where

AT =
[

σ1Ã
T
1 σ2Ã

T
2 · · · σmÃ

T
m

]

, Ā =
[

σ1Ã1 σ2Ã2 · · · σmÃm

]

,

Y = diag{Y, Y, . . . , Y }, Ĥ =
[

H̄π̄1 H̄π̄2 · · · H̄π̄q

]

, η̂ =
[

η̄1 η̄2 · · · η̄q

]

,

ᾱ = diag{α1I, α2I, . . . , αqI}, β̄ = diag{β1I, β2I, . . . , βqI},

then the system is exponentially mean-square stable and strictly (Q,S,R) dissipative, while its individual

steady-state variance is not more than the corresponding pre-specified upper-bound.

Proof: Based on the results we have obtained in Theorem 1 and Theorem 2, it suffices to prove that

inequality (50) with (51) guarantee (33) holds, and inequality (49) with (52) imply (24).

First, by Lemma 2, we can see that (51) is equivalent to

ÂY ÂT +

m∑

j=1

σ2j ÃjY Ã
T
j +

q
∑

i=1

H̄ΠiH̄
Tβ−1

i − Y + D̄WD̄T < 0. (53)

Then, by Schur Complement Equivalence, it is not difficult to see that inequality (50) indicates η̄Ti Y η̄i < β−1
i

or, equivalently, tr(ΓiY ) < β−1
i , and therefore

ÂY ÂT +

m∑

j=1

σ2j ÃjY Ã
T
j +

q
∑

i=1

H̄ΠiH̄
Ttr(Γ̄iY )− Y + D̄WD̄T < 0. (54)

It follows directly from Theorem 2 that the system (9) is exponentially mean-square stable and the steady-

state covariance defined by (32) exists and satisfies Ȳ < Y where Ȳ satisfies (36). Moreover, from (48), we

can see that the steady-state covariance of the system (1) defined in (13) satisfies

X̄ =
[

I 0
]

Ȳ

[

I

0

]

<
[

I 0
]

Y

[

I

0

]

< Y0, (55)

which means that the steady-state covariance constraint is also achieved. Similarly, it is not difficult to

prove that the exponentially mean-square stability and system dissipativity can be ensured simultaneously by

inequality (49) together with (52). The proof is complete.

Theorem 3: Given pre-specified steady-state variance upper bounds δ21 , δ
2
2 ,. . ., δ2n, matrices Q, S and R

with Q and R being symmetric, and scalars ǫ > 0 and ζ > 0. If there exist matrices M > 0, N > 0, real

matrices Āf , H̄f , K̄, and scalars αi > 0, βi > 0 (i = 1, 2, . . . , q) such that

αiβi = 1 (i = 1, 2, . . . , q) (56)
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eTsMes − δ2s < 0 (s = 1, 2, . . . , n) (57)





−βi πT1iN + πT2iH̄
T
f πT1i

∗ −N −I
∗ ∗ −M




 < 0 (58)






−αi ηTi ηTi M

∗ −N −I
∗ ∗ −M




 < 0 (59)














−N −I NA+ H̄f Θ̄C Āf Ĉ Φ16

∗ −M A AM +B1K̄ 0 Φ26

∗ ∗ −N −I 0 0

∗ ∗ ∗ −M 0 0

∗ ∗ ∗ ∗ −Ȳ Φ56

∗ ∗ ∗ ∗ ∗ Φ66














< 0 (60)
















−N −I LTS̄ ATN + CTΘ̄H̄T
f AT C̄ Υ17

∗ −M (MLT + K̄TBT
2 )S̄ ĀT

f MAT + K̄TBT
1 0 Υ27

∗ ∗ −R̄ DT
1 N +DT

3 H̄
T
f DT

1 0 0

∗ ∗ ∗ −N −I 0 0

∗ ∗ ∗ ∗ −M 0 0

∗ ∗ ∗ ∗ ∗ −Ȳ Υ67

∗ ∗ ∗ ∗ ∗ ∗ Υ77
















< 0 (61)

where

es = [0 · · · 0
︸ ︷︷ ︸

s−1

1 0 · · · 0
︸ ︷︷ ︸

n−s

]T,

S̄ = S −QD2, R̄ = DT
2 QD2 +DT

2 S + STD2 +R, C̃ =
[

σ1MCT
1 σ2MCT

2 · · · σmMCT
m

]

,

Ĉ =
[

σ1H̄fC1 0 σ2H̄fC2 0 · · · σmH̄fCm 0
]

, H̃f =
[

ζ1H̄f ζ2H̄f · · · ζmH̄f

]

C̄ =
[

σ1C
T
1 H̄

T
f 0 σ2C

T
2 H̄

T
f 0 · · · σmC

T
mH̄

T
f 0

]

, η̃ =
[

η1 η2 · · · ηq

]

,

Π̂ =
[

Nπ11 + H̄fπ21 Nπ12 + H̄fπ22 · · · Nπ1q + H̄fπ2q

]

, Π̃ =
[

π11 π12 · · · π1q

]

,

Φ16 =
[

H̃f 0 Π̂ ND1 + H̄fD3

]

, Φ26 =
[

0 0 Π̃ D1

]

, Φ56 =
[

0 C 0 0
]

,

Φ66 = diag{−Z,−Z,−β̄,−W−1}, Z = diag{ζ1I, ζ2I, . . . , ζmI}, Υ17 =
[

0 0 η̃ LTQ̄
]

,

Υ27 =
[

C̃ 0 Mη̃ (MLT + K̄TBT
2 )Q̄

]

, Υ67 =
[

0 −H 0 0
]

,

Υ77 = diag{−Z̄,−Z̄,−ᾱ,−I}, Z̄ = diag{ϑ1I, ϑ2I, . . . , ϑmI},
C = diag{0, σ1MCT

1 , 0, σ2MCT
2 , 0, . . . , 0, σmMCT

m}, H = diag{ϑ1H̄f , 0, ϑ2H̄f , 0, . . . , ϑmH̄f , 0},

Ȳ = diag

{[

N I

I M

]

,

[

N I

I M

]

, . . . ,

[

N I

I M

]}

then system (9) is exponentially mean-square stable and strictly (Q,S,R) dissipative and, meanwhile, the

individual steady-state variance constraint is also satisfied. Moreover, the desired estimator parameters and
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feedback controller parameter can be obtained by

K = K̄(UT)−1

Hf = V −1H̄f

Af = V −1(Āf − (NA+ V Hf Θ̄C)M −NB1KU
T)(UT)−1

(62)

where the nonsingular matrices U and V satisfy

UV T = I −MN (63)

which can be determined by the singular value decomposition of I −MN .

Proof: First, under the conditions of this theorem, it is easy to see that

[

−N −I
−I −M

]

< 0, (64)

which, by Schur Complement Equivalence, gives that −N+M−1 < 0 implying the non-singularity of I−MN .

Therefore, there always exist nonsingular matrices U and V such that (63) is true.

Introduce the following construction of Y ,

Y =

[

M U

UT Ξ1

]

, Y −1 =

[

N V

V T Ξ2

]

, Ξ1 = −UTNV −T, Ξ2 = −V TMU−T, (65)

and define

Ψ1 =

[

N I

V T 0

]

, Ψ2 =

[

I M

0 UT

]

. (66)

Then, we have

YΨ1 = Ψ2, UV T = I −MN. (67)

Next, let us prove that the inequality (49) is equivalent to (58). To start with, performing the congruence

transformation to (49) on both sides by diag{I,ΨT
1 }, we obtain

[

1 0

0 ΨT
1

][

−α−1
i π̄Ti H̄

T

∗ −Y

][

1 0

0 Ψ1

]

< 0

⇔
[

−α−1
i π̄Ti H̄

TΨ1

∗ −ΨT
1 YΨ1

]

< 0

⇔






−βi πT1iN + πT2iH̄
T
f πT1i

∗ −N −I
∗ ∗ −M




 < 0.

(68)

where βi , α−1
i (i = 1, 2, . . . , q). Therefore, inequality (49) is equivalent to (58). Similarly, we can prove

that inequality (50) holds if and only if inequality (59) holds. It is worth pointing out that, here we use the

equality constraints αiβi = 1 (i = 1, 2, . . . , q) to avoid the presence of the variable αi and its reciprocal α−1
i

in the same set of LMIs.

In the following, we will show that the inequalities (51) and (52) are implied by inequalities (60) and (61), re-

spectively. Performing the congruence transformation to (51) on both sides by diag{ΨT
1 ,Ψ

T
1 ,Ψ

T
1 , . . . ,Ψ

T
1 , I, I}
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results in 









−ΨT
1 YΨ1 ΨT

1 ÂYΨ1 ΨT
1 ĀYΨ̄1 ΨT

1 Ĥ ΨT
1 D̄

∗ −ΨT
1 YΨ1 0 0 0

∗ ∗ −Ψ̄T
1 YΨ̄1 0 0

∗ ∗ ∗ −β̄ 0

∗ ∗ ∗ ∗ −W−1











< 0, (69)

where Ψ̄1 = diag{Ψ1,Ψ1, . . . ,Ψ1}.
For the term ΨT

1 ĀYΨ̄1 in (69), we conduct the following calculation:

ΨT
1 ĀYΨ̄1 = ΨT

1

[

σ1Ã1 σ2Ã2 · · · σmÃm

]









Y 0 0 0

0 Y 0 0

0 0
. . . 0

0 0 0 Y

















Ψ1 0 0 0

0 Ψ1 0 0

0 0
. . . 0

0 0 0 Ψ1









=
[

σ1Ψ
T
1 Ã1YΨ1 σ2Ψ

T
1 Ã2YΨ1 · · · σmΨT

1 ÃmYΨ1

]

=

[

σ1H̄fC1 σ1H̄fC1M σ2H̄fC2 σ2H̄fC2M · · · σmH̄fCm σmH̄fCmM

0 0 0 0 · · · 0 0

]

.

(70)

Notice that the matrix variables H̄f and M are not linear in the term σiH̄fCiM . Here, for arbitrary scalars

ζi > 0 (i = 1, 2, . . . ,m), it is true that
[

0 H̄fCiM

MTCT
i H̄

T
f 0

]

6

[

ζiH̄fH̄
T
f 0

0 ζ−1
i MTCT

i CiM

]

. (71)

Then, it follows directly from (69) with (71) that the matrix inequality (51) is true if (60) is true. Similarly,

we could easily prove that the inequality (61) implies (52). Therefore, according to Corollary 1, system (9)

is exponentially mean-square stable and strictly (Q,R, S) dissipative, and the steady-state covariance exists,

satisfying X̄ 6M by (55). Next, it is obvious that (48) is equivalent to

M − Y0 < 0. (72)

Thus, X̄ 6 M < Y0. Now, from the n LMIs in (57), we can see that the individual variance of each system

states is not more than the pre-specified value. In other words, the design requirements (R1), (R2) and (R3)

are simultaneously satisfied. The proof is complete.

B. Computational Algorithm

It is worth mentioning that the obtained conditions in Theorem 3 are not all strict LMIs which, as a result,

cannot be solved directly by applying Matlab LMI-Toolbox. However, with the so-called cone complementarity

linearization (CCL) method proposed in [20], we can convert the original non-convex feasibility problem of

certain LMIs into some sequential optimization problems subject to LMI constraints. To this end, we introduce

a new condition by αiβi > 1 which, by Schur Complement Equivalence, is equivalent to
[

−αi 1

1 −βi

]

6 0, i = 1, 2, . . . , q. (73)

Then, using CCL method, we suggest the following minimization problem involving LMI conditions instead

of the original non-convex problem formulated in Theorem 3.
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Problem MCD (Multiobjective Controller Design)

min

q
∑

i=1

αiβi subject to (57) − (61) and (73). (74)

If the solution of the above minimization problem is q, that is, min(
∑q

i=1 αiβi) = q, then the condition in

Theorem 3 is solvable. It is should be pointed out that this algorithm does not guarantee finding a global

optimal solution for the problem above. Nevertheless, the proposed minimization problem is much easier to

be solved than the original non-convex feasibility problem.

Algorithm MCD

Step 1. Find a feasible set (M (0), N (0), Ā
(0)
f , H̄

(0)
f , K̄(0), α

(0)
i , β

(0)
i ) satisfying (57)–(61) and (73). Set d = 0.

Step 2. Solve the following optimization problem

min

q
∑

i=1

(

α
(d)
i βi + αiβ

(d)
i

)

subject to (57) − (61) and (73).

and denote g∗ as the optimized value.

Step 3. Substitute the obtained matrix variables (M,N, Āf , H̄f , K̄, αi, βi) into (57)–(61). If conditions (57)–

(61) are satisfied with

|g∗ − 2q| < υ

where υ is a sufficiently small positive scalar, then output the feasible solutions (M,N, Āf , H̄f , K̄, αi, βi) and

obtain the desired parameters Af , Hf and K by (62) and (63). EXIT.

Step 4. If d > N where N is the maximum number of iterations allowed, EXIT.

Step 5. Set d = d+ 1, (M (d), N (d), Ā
(d)
f , H̄

(d)
f , K̄(d), α

(d)
i , β

(d)
i )=(M,N, Āf , H̄f , K̄, αi, βi), and go to Step 2.

V. Numerical Example

In this section, we present an illustrative example to demonstrate the effectiveness of the proposed algorithm.

Consider the following discrete-time stochastic nonlinear system:







x(k + 1) =

[

0.2 −0.05

−0.1 0.08

]

x(k) +

[

0.03

−0.5

]

u(k) + f(x(k)) +

[

0.1

0.03

]

ω(k)

z(k) =
[

0.05 −0.07
]

x(k) + 0.04u(k) + 0.25ω(k)

(75)

with the measured output equation:

y(k) = Θ

[

−0.4 0.3

0.2 −0.1

]

x(k) + g(x(k)) +

[

0.02

0.01

]

ω(k). (76)

The stochastic nonlinear functions are taken to be

f(x(k)) =

[

0.2

0.3

]

(0.3 · sign[x1(k)] · x1(k)ν1(k) + 0.4 · sign[x2(k)] · x2(k)ν2(k)),

g(x(k)) =

[

0.1

0.4

]

(0.3 · sign[x1(k)] · x1(k)ν1(k) + 0.4 · sign[x2(k)] · x2(k)ν2(k))
(77)



FINAL VERSION 15

where xi(k) is the ith component of x(k). νi(k) is a zero mean, independent Gaussian white noise process

with unity covariances, which is also assumed to be independent from ω(k). It is easy to check that f(x(k))

and g(x(k)) satisfy

E

{[

f(x(k))

g(x(k))

] ∣
∣
∣
∣
∣
x(k)

}

= 0,

E

{[

f(x(k))

g(x(k))

]
[

fT(x(j)) gT(x(j))
]
∣
∣
∣
∣
∣
x(k)

}

= 0, k 6= j

E

{[

f(x(k))

g(x(k))

]
[

fT(x(k)) gT(x(k))
]
∣
∣
∣
∣
∣
x(k)

}

=









0.2

0.3

0.1

0.4

















0.2

0.3

0.1

0.4









T

xT(k)





[

0.3

0

][

0.3

0

]T

+

[

0

0.4

][

0

0.4

]T


x(k).

(78)

Hence,

π11 = π12 =

[

0.2

0.3

]

, π21 = π22 =

[

0.1

0.4

]

, η1 =

[

0.3

0

]

, η2 =

[

0

0.4

]

. (79)

In addition, we assume that the probabilistic density functions of θ1 and θ2 in [0, 1] are described by

p1(s1) =







0.8, s1 = 0

0.1, s1 = 0.5

0.1, s1 = 1

p2(s2) =







0.7, s2 = 0

0.2, s2 = 0.5

0.1, s2 = 1

(80)

from which the expectations and variances can be easily calculated as θ̄1 = 0.15, θ̄2 = 0.2, σ21 = 0.1025 and

σ22 = 0.11. Select Q = −1.2, S = 0.8 and R = 1.6. Choose the required steady-state variance constraints as

δ21 = 0.36 and δ22 = 0.64.

Applying standard numerical software to solve Problem MCD, we can obtain the observer and feedback

controller parameters as follows:

Af =

[

0.6944 0.4181

0.9199 0.5465

]

, Hf =

[

0.0155 0.0836

0.0221 0.1168

]

, K =
[

0.3862 0.0120
]

,

α1 = 0.9586, α2 = 0.9664, β1 = 1.0432, β2 = 1.0348.

(81)

The time responses of the individual states x1(k), x2(k) and their estimates x̂1(k), x̂2(k) are shown in Fig. 1

and Fig. 2.

VI. Conclusion

In this paper, we have designed an observer-based controller for a class of nonlinear stochastic systems such

that, for all possible degraded measurements , the closed-loop system is exponentially mean-square stable, the

system dissipativity is achieved, and the steady-state variance of individual state components is not more than

the pre-specified values. The nonlinearities considered here are characterized statistically, which can cover

several classes of commonly encountered nonlinearities. The solvability of the addressed problem has been

expressed as the feasibility of a set of LMIs with equality constraints. An algorithm has been proposed to
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convert the original non-convex feasibility problem into an optimal minimization problem which is much more

easily to solve by standard numerical software. An illustrative example has been presented to demonstrate the

effectiveness and applicability of the provided design method. Finally, we like to point out that the proposed

dissipativity analysis method can be applied to more complex systems/networks such as networked control

systems (NCS) [11], gene regulatory networks (GRN) [27], complex networks (CN) [28], neural networks (NN)

[17] and fuzzy systems [37–39].
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Fig. 1. System state x1(k) and its estimate x̂1(k).
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