1,700 research outputs found

    Parent formulation at the Lagrangian level

    Full text link
    The recently proposed first-order parent formalism at the level of equations of motion is specialized to the case of Lagrangian systems. It is shown that for diffeomorphism-invariant theories the parent formulation takes the form of an AKSZ-type sigma model. The proposed formulation can be also seen as a Lagrangian version of the BV-BRST extension of the Vasiliev unfolded approach. We also discuss its possible interpretation as a multidimensional generalization of the Hamiltonian BFV--BRST formalism. The general construction is illustrated by examples of (parametrized) mechanics, relativistic particle, Yang--Mills theory, and gravity.Comment: 26 pages, discussion of the truncation extended, typos corrected, references adde

    A minimal BV action for Vasiliev's four-dimensional higher spin gravity

    Get PDF
    The action principle for Vasiliev's four-dimensional higher-spin gravity proposed recently by two of the authors, is converted into a minimal BV master action using the AKSZ procedure, which amounts to replacing the classical differential forms by vectorial superfields of fixed total degree given by the sum of form degree and ghost number. The nilpotency of the BRST operator is achieved by imposing boundary conditions and choosing appropriate gauge transitions between charts leading to a globally-defined formulation based on a principal bundle.Comment: 39 pages, 1 figure. Additional comments in the conclusion

    Nano-scale multi-layered coatings for improved efficiency of ceramic cutting tools

    Get PDF
    This paper considers improving the efficiency of ceramic cutting tools using nano-scale multi-layered composite coatings deposited with an innovative arc-PVD processes with filtration of vapour-ion flow and diamond-like coating (DLC). Here a three-layered architecture of nano-structured multi-layered composite coatings is used, and the wear mechanism of the ceramic tool is examined. This approach allows implementing a direct control over the contact characteristics of the cutting process in order to reduce the normal and shear stresses that increase the probability of tool failure as a result of brittle fracture. This increases the adhesive strength of the coating with respect to the ceramic substrate. This resulted in an increase in tool life with reduced failure rate because of brittle fracture of the cutting edge. © 2016 Springer-Verlag Londo

    Revisit Sparse Polynomial Interpolation based on Randomized Kronecker Substitution

    Full text link
    In this paper, a new reduction based interpolation algorithm for black-box multivariate polynomials over finite fields is given. The method is based on two main ingredients. A new Monte Carlo method is given to reduce black-box multivariate polynomial interpolation to black-box univariate polynomial interpolation over any ring. The reduction algorithm leads to multivariate interpolation algorithms with better or the same complexities most cases when combining with various univariate interpolation algorithms. We also propose a modified univariate Ben-or and Tiwarri algorithm over the finite field, which has better total complexity than the Lagrange interpolation algorithm. Combining our reduction method and the modified univariate Ben-or and Tiwarri algorithm, we give a Monte Carlo multivariate interpolation algorithm, which has better total complexity in most cases for sparse interpolation of black-box polynomial over finite fields

    First order parent formulation for generic gauge field theories

    Full text link
    We show how a generic gauge field theory described by a BRST differential can systematically be reformulated as a first order parent system whose spacetime part is determined by the de Rham differential. In the spirit of Vasiliev's unfolded approach, this is done by extending the original space of fields so as to include their derivatives as new independent fields together with associated form fields. Through the inclusion of the antifield dependent part of the BRST differential, the parent formulation can be used both for on and off-shell formulations. For diffeomorphism invariant models, the parent formulation can be reformulated as an AKSZ-type sigma model. Several examples, such as the relativistic particle, parametrized theories, Yang-Mills theory, general relativity and the two dimensional sigma model are worked out in details.Comment: 36 pages, additional sections and minor correction

    Membrane electrode assemblies with low noble metal loadings for hydrogen production from solid polymer electrolyte water electrolysis

    Get PDF
    High performance membrane electrode assemblies (MEAs) with low noble metal loadings (NMLs) were developed for solid polymer electrolyte (SPE) water electrolysis. The electro- chemical and physical characterization of the MEAs was performed by IeV curves, elec- trochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Even though the total NML was lowered to 0.38 mg cm-2, it still reached a high performance of 1.633 V at 2 A cm-2 and 80 o C, with IrO2 as anode catalyst. The influences of the ionomer content in the anode catalyst layer (CL) and the cell temperature were investigated with the purpose of optimizing the performance. SEM and EIS measurements revealed that the MEA with low NML has very thin porous cathode and anode CLs that get intimate contact with the electrolyte membrane, which makes a reduced mass transport limitation and lower ohmic resistance of the MEA. A short-term water electrolysis operation at 1 A cm-2 showed that the MEA has good stability: the cell voltage maintained at ~1.60 V without distinct degradation after 122 h operation at 80 o C and atmospheric pressure.Web of Scienc

    Membrane electrode assemblies with low noble metal loadings for hydrogen production from solid polymer electrolyte water electrolysis

    Get PDF
    High performance membrane electrode assemblies (MEAs) with low noble metal loadings (NMLs) were developed for solid polymer electrolyte (SPE) water electrolysis. The electro- chemical and physical characterization of the MEAs was performed by IeV curves, elec- trochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Even though the total NML was lowered to 0.38 mg cm-2, it still reached a high performance of 1.633 V at 2 A cm-2 and 80 o C, with IrO2 as anode catalyst. The influences of the ionomer content in the anode catalyst layer (CL) and the cell temperature were investigated with the purpose of optimizing the performance. SEM and EIS measurements revealed that the MEA with low NML has very thin porous cathode and anode CLs that get intimate contact with the electrolyte membrane, which makes a reduced mass transport limitation and lower ohmic resistance of the MEA. A short-term water electrolysis operation at 1 A cm-2 showed that the MEA has good stability: the cell voltage maintained at ~1.60 V without distinct degradation after 122 h operation at 80 o C and atmospheric pressure.Web of Scienc

    Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields

    Full text link
    Conformal totally symmetric arbitrary spin bosonic fields in flat space-time of even dimension greater than or equal to four are studied. Second-derivative (ordinary-derivative) formulation for such fields is developed. We obtain gauge invariant Lagrangian and the corresponding gauge transformations. Gauge symmetries are realized by involving the Stueckelberg and auxiliary fields. Realization of global conformal boost symmetries on conformal gauge fields is obtained. Modified de Donder gauge condition and de Donder-Stueckelberg gauge condition are introduced. Using the de Donder-Stueckelberg gauge frame, equivalence of the ordinary-derivative and higher-derivative approaches is demonstrated. On-shell degrees of freedom of the arbitrary spin conformal field are analyzed. Ordinary-derivative light-cone gauge Lagrangian of conformal fields is also presented. Interrelations between the ordinary-derivative gauge invariant formulation of conformal fields and the gauge invariant formulation of massive fields are discussed.Comment: 51 pages, v2: Results and conclusions of v1 unchanged. In Sec.3, brief review of higher-derivative approaches added. In Sec.4, new representations for Lagrangian, modified de Donder gauge, and de Donder-Stueckelberg gauge added. In Sec.5, discussion of interrelations between the ordinary-derivative and higher-derivative approaches added. Appendices A,B,C,D and references adde

    Higher-Spin Interactions: four-point functions and beyond

    Get PDF
    In this work we construct an infinite class of four-point functions for massless higher-spin fields in flat space that are consistent with the gauge symmetry. In the Lagrangian picture, these reflect themselves in a peculiar non-local nature of the corresponding non-abelian higher-spin couplings implied by the Noether procedure that starts from the fourth order. We also comment on the nature of the colored spin-2 excitation present both in the open string spectrum and in the Vasiliev system, highlighting how some aspects of String Theory appear to reflect key properties of Field Theory that go beyond its low energy limit. A generalization of these results to n-point functions, fermions and mixed-symmetry fields is also addressed.Comment: 66 pages, 10 figures, 1 table, LaTex. Several statements clarified. Final version to appear in JHE

    Coupling Interface Constructions of MoS2/Fe5Ni4S8 Heterostructures for Efficient Electrochemical Water Splitting

    Full text link
    Water splitting is considered as a pollution‐free and efficient solution to produce hydrogen energy. Low‐cost and efficient electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are needed. Recently, chemical vapor deposition is used as an effective approach to gain high‐quality MoS2 nanosheets (NSs), which possess excellent performance for water splitting comparable to platinum. Herein, MoS2 NSs grown vertically on FeNi substrates are obtained with in situ growth of Fe5Ni4S8 (FNS) at the interface during the synthesis of MoS2. The synthesized MoS2/FNS/FeNi foam exhibits only 120 mV at 10 mA cm−2 for HER and exceptionally low overpotential of 204 mV to attain the same current density for OER. Density functional theory calculations further reveal that the constructed coupling interface between MoS2 and FNS facilitates the absorption of H atoms and OH groups, consequently enhancing the performances of HER and OER. Such impressive performances herald that the unique structure provides an approach for designing advanced electrocatalysts.Strong coupling interfaces of a vertical MoS2 array and in situ grown Fe5Ni4S8 are formed by chemical vapor deposition. The interfacial coupling of the MoS2 array on FeNi foam shows outstanding activity of both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER): 120 mV @ 10 mA cm–2 for HER and 204 mV @ 10 mA cm–2 for OER.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146422/1/adma201803151_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146422/2/adma201803151-sup-0001-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146422/3/adma201803151.pd
    corecore