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Abstract 

High performance membrane electrode assemblies (MEAs) with low noble metal 

loadings (NMLs) were developed for solid polymer electrolyte (SPE) water 

electrolysis. The electro- chemical and physical characterization of the MEAs was 

performed by IeV curves, elec- trochemical impedance spectroscopy (EIS) and 

scanning electron microscopy (SEM). Even though the total NML was lowered to 

0.38 mg cm-2, it still reached a high performance of 1.633 V at 2 A cm-2 and 80 o 

C, with IrO2 as anode catalyst. The influences of the ionomer content in the anode 

catalyst layer (CL) and the cell temperature were investigated with the purpose of 

optimizing the performance. SEM and EIS measurements revealed that the MEA 

with low NML has very thin porous cathode and anode CLs that get intimate contact 

with the electrolyte membrane, which makes a reduced mass transport limitation 

and lower ohmic resistance of the MEA. A short-term water electrolysis operation at 

1 A cm-2 showed that the MEA has good stability: the cell voltage maintained at 

~1.60 V without distinct degradation after 122 h operation at 80 o C and atmospheric 

pressure.  

 

1.       Introduction 

Solid polymer electrolyte water electrolysis (SPEWE) is a pleasing way for pure or 

‘green’ hydrogen production at low temperature without fossil fuel consumption and 

emission of greenhouse gases such as COx, SOx and NOx and any toxic 

particulates. Therefore, SPEWE is currently believed as a favorable technique for 

extensive hydrogen production in the future [1e3]. In recent years, although the 

researchers have speeded up the development of SPEWE, the systems are still too 

costly to replace traditional waterealkaline electrolysers [1,3]. 

 

In conventional SPEWE technology, Ir (or IrO2) and Pt are commonly  used  noble  

metal  catalysts  respectively  for  the anode  oxygen  evolution  reaction  (OER)  and  

the  cathode hydrogen evolution reaction (HER) [3e10]. According to Millet et al. [3], 

these noble metal loadings (NMLs) require a signifi- cant reduction from a few mg 
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cm-2 (current state-of-the-art) down to ca. 0.1 mg cm-2 for the whole cost 

reduction. There- fore, many of the recent studies have been focusing on 

developing highly active anode and cathode catalysts for SPEWE [10e20] with 

reduced noble metals content and overall cost. For example, oxides such as IreRu 

[13,14], IreSn [15e17], IreTa [14,18], IreRueSn [19] and IreRueTa [20], etc. were 

developed as oxygen evolution electrocatalysts. Some of these catalysts showed much 

better performance for water electrolysis than the commonly used IrO2 catalyst. 

However, it is still difficult to decrease the content of these noble metals to an 

acceptable level due to the unavailability of carbon support suitable for these 

catalysts [3,21]. On the other hand, some studies have intended to develop low-cost 

SPEs in place of the expensive Nafion® membrane [22e27]. Although significant 

performance values have been obtained in some studies, the practical use of these 

composite membranes under industrial electrolysis conditions has not been 

sufficiently demonstrated. For example, for non-homogeneous membrane, such as a 

Nafion® and PTFE reinforcement membrane, delamination of the MEA in ‘harsh’ 

environments such as hot water in a working electrolyzer should be considered since 

the thermal expansion and swelling coefficients of two polymers are different. 

 

Like in low temperature hydrogen fuel cells, the MEA is the key part of an SPEWE 

system. The fabrication methods for MEAs with low NML (usually, Pt) have been 

studied exten- sively in the fuel cell technology to reduce the noble metal use and, 

accordingly, cost [28e30]. However, there has been limited work reported on 

developing MEAs with low NMLs for SPE water electrolysis, even though these two 

fields are closely related. One of the main reasons is the difficulty in fabricating thin 

(a few microns thick) and uniform anode catalyst layer (CL) due to the 

unavailability of supports suitable for the anode catalysts [3,21]. 

 

In our previous work, a novel catalyst coated membrane (CCM) method, termed 

catalyst sprayed membrane under illu- mination (CSMUI) [31], was developed for 

MEA preparation for SPEWE. The MEAs prepared by this method exhibited high 

performances for water electrolysis. In this study, we investi- gated the feasibility of 

using CSMUI method to prepare low NML MEAs for SPEWE. A high performance MEA 

with low NML was obtained using CSMUI method via further optimization of the 

anode CL structure. The effects of the NML and cell temperature on the cell 

performance were investigated. Polarization and durability tests showed that the 

MEA with low NML exhibited good performance and stability for SPE water 

electrolysis. 

 

2. Experimental methods 

2.1 Preparation of MEAs 

The catalyst inks were prepared by mixing the catalysts powder into a blend of 5 

wt.% Nafion® ionomer solution (DuPont, USA) and isopropanol. The catalyst 

used for the cathode and the anode were Hispec 4100 Pt/C (20 wt.% Pt, Alfa Aesar, 
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Johnson Matthey) and IrO2 (99.9%, Alfa Aesar, Johnson Matthey), respectively. 

Before being used, the dispersion mixture was sonicated in a 40 kHz ultrasonic bath 

for 40 min. The polymer electrolyte membrane used in this study is Nafion® 212 

(DuPont, USA). The membranes were pre-treated at 80 oC in the solutions of 5 wt.% 

H2O2, ultrapure water, 0.5 M H2SO4 and ultrapure water for 60 min, sequentially. 

 

The CCMs were obtained by spraying the catalyst inks onto the both side of the 

pretreated membranes with a spray gun (nozzle caliber: 0.2 mm, atomization 

style). A more detailed account of the preparation of the CCM has been given previ- 

ously [31]. The Nafion® content varied from 0 wt.% to 30 wt.% in the anodes to be 

optimized, while it was always 30 wt.% in the cathodes for this study. The NMLs at 

the cathode and anode were determined by two ways. Firstly, the catalyst 

quantities for the cathode and anode inks were weighed accurately. Normally, 10% 

more catalyst than the calculated amount was used considering the loss during the 

fabrication process. Secondly, the uncoated membrane, the membrane coated with 

cathode CL, and the membrane coated with both cathode and anode CLs were 

weighted, whereby the individ- ual NMLs for both the cathode and the anode can be 

calculated separately, to make sure that the NMLs conformed to the intended 

MEA design. Unless otherwise specified, the IrO2 loading and Pt loading for the 

cathode and the anode were 0.04 and 0.4 mg cm-2 respectively, much lower than 

for conven- tional SPEWE CCMs, amongst the lowest loadings for SPEWE that the 

authors have found in the literature [3,20,32]. 

 

Porous titanium (Ti) fiber (Bekenit, SaitamaKen, Japan; thickness 0.3 mm, 60% 

porosity) was used as the anode  gas diffusion layer (GDL)/current collector. The GDL 

for the cathode was prepared with same procedure described in our previously work 

[31]. The active area of the prepared MEAs was 4 cm2. 

 

2.2 Evaluation of MEA performance in water electrolysis  

An SPE water electrolysis cell was used to evaluate the performance of the as-

prepared MEAs, and details of the cell can be found elsewhere [31]. The water 

electrolysis performance of the SPE electrolyzer was tested at 80 o C and 

atmospheric pressure. Preheated deionized water (18.3 MU cm), with a flow rate of 50 

ml min-1, was circulated and supplied to the anode compartment by a peristaltic 

pump. The water temperature was kept at 5 o C higher than the cell temperature. 

Total cell polarization curves were recorded galvanostatically between 1 mA cm-2 

and 2 A cm-2 using a Neware battery testing sys- tem (Neware Technology Ltd, 

China). 

 

 

 

http://repository.uwc.ac.za



4 
 

2.3 SEM and electrochemical measurements of MEAs 

An ultra-high resolution field-emission SEM (Nova™ NanoSEM 230, FEI, USA) was 

used to observe the cross-sections and surfaces of the MEAs. 

 

Electrochemical impedance spectroscopy (EIS) was performed by an Autolab 

PGSTAT 30 Potentiostat/Galvanostat (Metrohm) equipped with a 10 A booster 

and a frequency response analyzer (FRA). The impedance data were generated and 

simulated using the Autolab Nova software. During EIS tests, the cathode was 

served as both the reference electrode (RE) and the counter electrode (CE) since 

the polarization of HER is negligible compared to that for OER at anode during 

water electrolysis operation. The impedance spectra were recorded at a cell potential 

of þ1.5 V in the frequency range of 0.1e10,000 Hz with sinusoidal amplitude of 5 mV. 

 

3. Results and discussion 

3.1 Water electrolysis performance of the MEAs with different NMLs 

Through gradually decreasing the IrO2 loading on the anode and Pt loading on the 

cathode, a series of MEAs with different NMLs were prepared. Table 1 shows the 

specifications of these MEAs. For simplicity, they were designated in shortened form 

as MEA-1, MEA-2, MEA-3 and MEA-4, respectively. 

 

Fig. 1 shows the performance of the MEAs with various amounts of NML. It is 

obvious that the cell voltage rose considerably in the activation overpotential region 

with the decrease of catalyst loading, indicating that a slow electrode kinetics leads 

to performance loss. At a current of 0.3 A cm-2, the cell voltage of MEA-3 reached 

1.474 V, 35 mV higher than that of MEA-1 (1.439 V). However, with the increase in 

current density, the cell voltage difference between MEA-3 and MEA-1 became 

gradually less significant. At a current of 2 A cm-2, the cell voltage of MEA-3 was 

1.633 V, only 3 mV higher than that of MEA-1 (1.63 V). By contrast, at high current 

densities, the cell voltage is generally affected by bubble formation (known as 

bubble overpotential) and ohmic resistivity, thus giving a determination of the MEA 

performance under practical operation conditions. Therefore, the significant 

improvement of water electrolysis performance in the medium and high current 

density region (>1 A cm-2) indicates that MEA-3 with an NML of 0.38 mg cm-2 

possesses lower ohmic resistance and mass transport limitations. This result 

indicates that high performance MEA with low NML for SPE water electrolysis can 

be obtained by minimizing the mass transport and electronic-resistance of the 

system. 

 

It should be pointed out that a further decrease of NML from 0.38 mg cm-2 to 

0.28 mg cm-2 (MEA-4) shows no MEA performance gains, either at low or high 

current densities, which could be due to two possible reasons: (1) catalyst 

insufficiency limits the electrochemical reactions in the electrodes at high current 
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densities; (2) too little catalysts lead to poor contact between the CLs and the 

membrane, as well as the CLs and the backing layers. 

 

Fig. 2(A) shows the in situ impedance curves of the four MEAs at a cell voltage of 

1.5 V. It can be seen that only one low-frequency response arc was detected, 

indicating that mass transport limitation was negligible in this operation [3]. Then a 

widely employed equivalent circuit (EC) [3,33] can be used to fit the impedance data 

according to the assignment of Nyquist plot features, as shown in Fig. 2(B). The 

low-frequency response arc is attributed to the anode charge transfer processes 

and represented by a resistor RCT,A. The constant phase element (CPE) in parallel 

to RCT,A represents the double-layer capacitance for the anode. The high-

frequency response arc is attributed to cathode process and represented by a 

resistance (RCT,C) in parallel with a CPE. Although similar high-frequency feature 

can be found in some published works 

 

 
 

 
 

http://repository.uwc.ac.za



6 
 

 
 

[6,8], the origin of the high-frequency impedance response has not been conclusively 

established [34], MEA structure features (such as the proton conductivity limitation 

within the CL) are suspected to be the reasons for this phenomenon [33,35]. The 

total charge transfer resistance (RCT) was then obtained by adding up RCT,C and 

RCT,A. The high-frequency intercept on the real axis, RU, comprises ionic 

resistances of the membrane and the CLs, electronic resistances of each cell 

component (i.e. CLs, backing layers and bipolar plates) and the interfacial contact 

resistances between them. 

 

Through simulation with the EC, the cell resistance (RU) and total charge 

transfer resistance (RCT) of the four MEAs can be calculated and are also 

summarized in an insetted table in Fig. 2(A). It is clear that MEA-4 had the largest 

ohmic resistance and charge transfer resistance, which may due to the 
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insufficient catalyst loading of this MEA resulting in poor electrochemical reaction 

kinetics. However, MEA-3 with a relative low NML (0.38 mg cm-2) showed the 

lowest ohmic resistance compared to MEA-1 and MEA-2, which may resulted from 

the reductions on both the ionic- and electronic-resistances of the anode CL since 

all other components and test conditions were identical in the study, indicating 

that decreasing the catalyst loading is an effective way to lower ohmic resistance of 

the CL due to decreased CL thickness. The RU order of the four MEAs is certainly 

consistent with their performance shown in Fig. 1: the lower the cell resistance, 

the better the performance improvement at high current densities, which 

suggests that lowering cell resistance is a key factor to obtaining high 

performance MEAs for SPE water electrolysis, especially in practical applications 

(normally operated at medium and high current densities). These findings are in 

good agreement with those reported by Rasten et al. [8]. 

 

The utilization efficiency of the noble metal is shown in Fig. 3, in which the 

polarization curves from Fig. 1 are plotted against the mass activity (A/mg of noble 

metal) as x-axis. The MEAs with lower NMLs (MEA-3 and MEA-4) show significantly 

higher utilization efficiency than the MEAs with normal NMLs (MEA-1 and MEA-2), 

which implies that the CSMUI method is effective in preparation of low NMLs 

MEAs for SPE water electrolysis. The MEA with a 0.38 mg cm-2 (MEA-3) shows the 

highest utilization efficiency, in which the NML is only 1/5e1/8 of that in normal 

MEAs (2e3 mg cm-2), indicating that high performance SPE water electrolyzer 

MEAs with low NML can be obtained by optimizing the fabrication and structure of 

the catalyst layer. 

 

3.2.     Optimization of Nafion® content in the anode CL of the MEAs with low 

NML 

Nafion® ionomer is a key component in the CLs, and functional to form the 

desired three-phase reaction boundaries and boost catalysts utilization in the 

electrodes. For Pt/C catalyst, ~30 wt.% Nafion® content is an optimal value in CL, 

which has been widely used in PEMFC studies [36]. However, the optimal value for 

IrO2 catalyst, which has been extensively used in SPE water electrolyzers [4e9], has 

not been reported yet. In current literature on SPE water electrolysis, there is no 

recognized value for the Nafion® content in the anode, typically 5-33 wt.% 

Nafion® content was applied [8,9,13e16,18,20,37]. 

 

Fig. 4 presents polarization curves of the MEAs with various Nafion® content in the 

anode CL. The Nafion® content at the cathode for all these MEAs was 30 wt.%. For 

comparison purposes, the cell voltages of the MEAs at 1 A cm-2 with various 

Nafion® contents were plotted, as shown in the insert of Fig. 4. It is evident that the 

Nafion® content in the anode CL has an obvious influence on the performance of 
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the MEA with low NML. With the decrease of the Nafion® content from 30 wt.% to 5 

wt.%, the performance of the MEA increased by about 70%, and the current density 

at 1.6 V increased from 0.98 A cm-2 to 1.63 A cm-2. Generally, the electronic 

conductivity and the porosity of CL improve with a decrease in Nafion® ionomer 

content, which certainly helps the improvement of the MEA performance. However, 

too low content of Nafion® greatly decreases the three-phase reaction boundaries 

in the CL, which in turn affects the MEA performance adversely. 
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Under conditions used in the study, it was found that the MEA with the lowest 

Nafion® content  (5  wt.%) exhibited  the highest performance due to possible 

reasons as follows. 

 

i. Unlike Pt/C catalyst, the nano IrO2 catalyst is denser due to the absence of 

electrocatalyst support material, theoretically the required ionomer should be lower. 

ii. The CSMUI method results in ample interfacial contact between the CL and the 

membrane and IrO2 catalyst mainly located in the catalyst/membrane interface, 

thus the optimal Nafion® content in CL can be decreased greatly. This can be 

verified by comparing the performance of the MEA without Nafion® ionomer in 

the CL. From Fig. 4, it can be seen that the MEA with 0 wt.% Nafion® content in 

the anode still delivered a high performance, only next to the MEA with 5 wt.% 

Nafion® content, which indicates that the Nafion® ionomer from the electrolyte 

surface is almost enough for proton transfer in anode CL. 

iii. The MEA with low NML possesses a very thin CL, so the loss of the three-phase 

reaction boundaries due to the low Nafion® content might be negligible since the 

electrochemical reaction occurs mainly in the catalyst/membrane interface 

[30,38]. 

iv. In SPE water electrolysis, the most important limitation of the MEA cell is its high 

electrical resistance, as has been proven by Rasten et al. [8]. There was a concern 

that too low content of Nafion® in CL may decrease the adhesive force between the 

CL and the membrane, leading to delamination of the CL from the surface of 

membrane [39]. Considering this, a stability test was performed (see Section 3.4) 

and it was found that the low NML MEA still had good CL/membrane interface and 

performance stability even after the 120 h test, which further indicates that the 

CSMUI method can produce strong catalystemembrane bond, thus forming a 

tight catalyst/ membrane interface even though the content of Nafion® binder in 

the catalyst ink is low. 

 

Based on above reasons, it is concluded that the optimum anode Nafion® content 

for the low NML MEA with IrO2 catalyst is 5 wt.%. This value was also used by 

several authors where MEAs showed high performance values [15,16,20]. 

 

3.3.    Effect of cell temperature on the performance of the MEA with low NML 

It is widely recognized that major polarization occurs in the anode of SPE 

electrolyzer due to poor OER kinetics and limitations in proton transfer within the 

CL of the MEA. Therefore, elevated operating temperatures are required to obtain 

better cell performance. Considering the normal working temperature region for 

the Nafion®-based water electrolysis system, the cell temperatures varied from 25 

o C to 90 o C were evaluated. Taking into account the NML considerations presented 
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above, the MEA was prepared with 0.38 mg cm-2 NML and 5 wt.% Nafion® 

content in the anode CL. 

 

Fig. 5(A) shows the performance of the MEA with low NML at various temperatures. 

It clearly demonstrates that the MEA performance improved by increasing the cell 

temperature, resulting from the improved diffusion processes and the electrode 

kinetics, as well as an increase in electrolyte conductivity [24,40]. Also, it found 

that the temperature effect on the enhancement of the cell performance was lower 

in the region above 60 o C. As shown in Fig. 5(B), when the cell temperature 

increased from 25 o C to 60 o C, the cell voltage decreased by 154 mV (from 1.724 V 

to 1.57 V). Further increasing the temperature to 90 o C only causes a cell voltage 

decrease of 32 mV from 1.57 V to 1.538 V.  
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In order to elucidate  these results, a semiempirical equation [39,41e43] was used to 

fit these experimental data, which is written as: 

 

 
 

where E is the experimental cell potential, a is a constant, b is the Tafel slope which is related 

to the performance of the CL while the electro-catalytic reaction is the rate determining 

step, R is the uncompensated ohmic resistance, and j is the current density. At  low current 

density, where R  can be neglected, a and b can be found from the slope of the curve. By 

using the following expression [42]: 

 

 
 

the exchange current density ( j0) can be obtained from a, which is a measure of 

electrocatalytic activity, related to the OER reaction rate [42]. In Eq. (2), Er is the 

thermodynamic reversible potential. The values of these parameters are shown in 

Table 2. 
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As expected, a rise of cell temperature obviously increased the exchange current 

density ( j0) due to the  intrinsic enhancement of the catalytic activity with 

temperature. It was found that the cell ohmic resistance, R, decreased with an 

increase in temperature. Generally, the influence of temperature on the electronic 

conductivity of the CLs is limited, thus the change of R values mostly depends upon 

the proton conductivity in the CLs and the membrane. However, since the 

conductivity of Nafion® ionomer depends crucially on the water content, an 

elevation in temperature at its “high” region has less influence on the proton 

conductivity in water-rich surroundings due to improved “water activity” [44,45], 

which could be the reason that R-changes slightly at higher temperatures. 

Furthermore, Nafion® ionomer is also an active component in the electrodes, by 

which protons can be trans- ported in the CLs. Consequently, the slight increase in 

the Tafel slope (b) can also be observed when the temperature reaches 60 o C. 

 

 
 

At low cell temperatures (<60 o C), the inefficiencies of the proton transfer and 

electrode kinetics are thought to be the main reasons for the performance 

deterioration, especially at high current densities. Taking these findings into 

account, the operating temperature for the low NML MEA should be above 60 oC, 

where the MEA can reach satisfactory performance due to considerable electrode 

kinetics and proton conductivity values. 

 

3.4.      Durability of the MEA with low NML 

In order to investigate the durability of the MEA with low NML, a primary 122 h water 

electrolysis operation test at 1 A cm-2 and 80 o C was conducted, as shown in Fig. 6. 
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The MEA used in this test had the same composition as the MEA-3 listed in Table 

1, i.e., the total NML was 0.38 mg cm-2 and the anode Nafion® content was 5 

wt.%. It can be observed that the cell voltage remains at ~1.60 V without 

significant cell voltage decay during the 122 h operation at 80 o C and a normal 

working current density of 1 A cm-2, implying the good stability of the low NML 

MEA in this study. The ‘apparent’ degradation of the MEA performance estimated 

from Fig. 6 is ca. 230 mV h-1, which is similar to value in our previous study for the 

MEA with normal NML [31]. It can be assumed that the stability of the MEA profited 

from the uniform porous structure of the CLs, as well as the good contact between 

the CLs and the Nafion® membrane caused by the CSMUI deposition method. To 

verify this result, the cross-section of the MEA which endured 122 h durability test 

was compared with that of an as-prepared MEA using SEM, as shown in Fig. 7. Fig. 

7(A) shows the cross section of an untested MEA, in which it can be seen that the 

CLs closely adhered to the electrolyte membrane. Even after 122 h water 

electrolysis, no CL piece peeled from the membrane (Fig. 7(B)), indicating that the 

CLs remained sticked to the electrolyte membrane strongly during electrolysis, 

which confirmed the validity of CSMUI method used for the low NML MEAs 

fabrication. Furthermore, from Fig. 7(A) the thickness of cathode and anode CLs 

of about 3.5 mm and 1.6 mm, respectively were estimate. Such thin CLs may lead to 

small mass transport and charge transfer resistances, which further confirmed 

the results presented in Figs. 1 and 2. Fig. 7(C) and (D) showed the uniform 

porous structures of the CLs, which are certainly beneficial to water transport and 

departure of gases. The combination of thin CLs, uniformly porous CL structure 

and close contact between the membrane and the CLs could be the reasons why the 

MEA with low NML exhibited good performance and stability in SPE water 

electrolysis. 

 

4.       Conclusions 

High performance MEA with low NML was prepared for SPE water electrolysis using 

the CSMUI method. The optimal Nafion® content in the anode was only 5 wt.%, 

with a total NML of 0.38 mg cm-2. These values are significantly lower than those 

for the MEAs usually reported, suggesting ample interface contact between the 

membrane and the CLs. Compared with conventional MEAs, the MEA with low 

NML showed much higher mass activity, especially at high current densities, due to 

a decrease in ohmic resistance and mass transport limitations. It was also found 

that the working operating temperature for the low NML MEA should be above 60 o 

C, where the MEA can reach a satisfactory performance due to improved electrode 

kinetics and proton conductivity. At the working temperature of 80 o C, the cell 

voltage can be as low as 1.546 V at 1 A cm-2 whereby the terminal voltage was only 

1.633 V at 2 A cm-2, which are comparable to the results found for the MEAs with 

standard NMLs. The durability test showed that the MEA with low NML exhibited 
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good stability in water electrolysis and at a current of 1 A cm-2 its voltage 

remained at ~1.60 V without significant degradation during the 122 h of testing. It 

is suggested that the thin CLs, the uniformly porous CL structure, as well as the 

ample interfacial contact between the membrane and the CLs may be crucial 

factors yielding high performance and good stability of the newly prepared MEAs. 
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catalytic layer in polybenzimidazole-based high temperature PEMFC: effect of 

platinum content on the carbon support. Fuel Cells 2010;10(2):312e9. 

[44] Mauritz KA, Moore RB. State of understanding of Nafion. Chem  Rev  

2004;104(10):4535e85. 

http://repository.uwc.ac.za

http://refhub.elsevier.com/S0360-3199(13)01295-0/sref29
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref29
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref29
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref29
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref29
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref29
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref30
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref30
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref30
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref30
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref30
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref30
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref30
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref31
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref31
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref31
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref31
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref31
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref31
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref31
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref31
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref31
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref32
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref32
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref32
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref32
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref32
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref32
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref32
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref33
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref33
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref33
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref33
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref33
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref33
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref34
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref34
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref34
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref34
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref34
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref34
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref34
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref35
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref35
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref35
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref35
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref35
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref35
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref35
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref35
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref36
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref36
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref36
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref36
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref36
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref36
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref37
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref37
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref37
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref37
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref37
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref37
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref38
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref38
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref38
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref38
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref38
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref38
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref38
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref39
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref39
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref39
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref39
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref39
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref40
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref40
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref40
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref40
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref40
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref41
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref41
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref41
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref41
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref41
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref41
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref41
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref42
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref42
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref42
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref42
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref43
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref43
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref43
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref43
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref43
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref43
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref43
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref44
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref44
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref44
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref44


18 
 

[45]  Springer TE, Zawodzinski TA, Gottesfeld S. Polymer electrolyte fuel cell model. J 

Electrochem Soc 1991;138(8):2334e42. 

 

http://repository.uwc.ac.za

http://refhub.elsevier.com/S0360-3199(13)01295-0/sref45
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref45
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref45
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref45
http://refhub.elsevier.com/S0360-3199(13)01295-0/sref45



