233 research outputs found

    Gold nanoparticle conjugated Rad6 inhibitor induces cell death in triple negative breast cancer cells by inducing mitochondrial dysfunction and PARP-1 hyperactivation: Synthesis and characterization

    Get PDF
    We recently developed a small molecule inhibitor SMI#9 for Rad6, a protein overexpressed in aggressive breast cancers and involved in DNA damage tolerance. SMI#9 induces cytotoxicity in cancerous cells but spares normal breast cells; however, its therapeutic efficacy is limited by poor solubility. Here we chemically modified SMI#9 to enable its conjugation and hydrolysis from gold nanoparticle (GNP). SMI#9-GNP and parent SMI#9 activities were compared in mesenchymal and basal triple negative breast cancer (TNBC) subtype cells. Whereas SMI#9 is cytotoxic to all TNBC cells, SMI#9-GNP is endocytosed and cytotoxic only in mesenchymal TNBC cells. SMI#9-GNP endocytosis in basal TNBCs is compromised by aggregation. However, when combined with cisplatin, SMI#9-GNP is imported and synergistically increases cisplatin sensitivity. Like SMI#9, SMI#9-GNP spares normal breast cells. The released SMI#9 is active and induces cell death via mitochondrial dysfunction and PARP-1 stabilization/hyperactivation. This work signifies the development of a nanotechnology-based Rad6-targeting therapy for TNBCs

    The Impact of Spatial Incongruence on an Auditory-Visual Illusion

    Get PDF
    The sound-induced flash illusion is an auditory-visual illusion--when a single flash is presented along with two or more beeps, observers report seeing two or more flashes. Previous research has shown that the illusion gradually disappears as the temporal delay between auditory and visual stimuli increases, suggesting that the illusion is consistent with existing temporal rules of neural activation in the superior colliculus to multisensory stimuli. However little is known about the effect of spatial incongruence, and whether the illusion follows the corresponding spatial rule. If the illusion occurs less strongly when auditory and visual stimuli are separated, then integrative processes supporting the illusion must be strongly dependant on spatial congruence. In this case, the illusion would be consistent with both the spatial and temporal rules describing response properties of multisensory neurons in the superior colliculus.status: publishe

    Comparing eye movements recorded by search coil and infrared eye tracking

    Full text link
    OBJECTIVE: The performance of a new video-based infrared eye tracker (IR) was compared to the magnetic search coil technique (SC). Since the IR offers interesting possibilities as a diagnostic tool in neuro-ophthalmology, it was investigated whether the new device has overcome shortcomings that were reported from former IR systems. METHODS: Horizontal saccades were recorded using the IR and the SC. The IR allowed eye movement recordings at different sampling rates ranging from 250 Hz to 1000 Hz while the SC recorded at 1000 Hz. RESULTS/CONCLUSIONS: The results show that the IR and the SC were in good agreement and produced similar results. In contrast to other studies, the influence of the sampling rate of the IR was small. The saccade main-sequences did not show significant differences. The latency times observed for both systems were mainly in the short-latency range

    Audiovisual Segregation in Cochlear Implant Users

    Get PDF
    It has traditionally been assumed that cochlear implant users de facto perform atypically in audiovisual tasks. However, a recent study that combined an auditory task with visual distractors suggests that only those cochlear implant users that are not proficient at recognizing speech sounds might show abnormal audiovisual interactions. The present study aims at reinforcing this notion by investigating the audiovisual segregation abilities of cochlear implant users in a visual task with auditory distractors. Speechreading was assessed in two groups of cochlear implant users (proficient and non-proficient at sound recognition), as well as in normal controls. A visual speech recognition task (i.e. speechreading) was administered either in silence or in combination with three types of auditory distractors: i) noise ii) reverse speech sound and iii) non-altered speech sound. Cochlear implant users proficient at speech recognition performed like normal controls in all conditions, whereas non-proficient users showed significantly different audiovisual segregation patterns in both speech conditions. These results confirm that normal-like audiovisual segregation is possible in highly skilled cochlear implant users and, consequently, that proficient and non-proficient CI users cannot be lumped into a single group. This important feature must be taken into account in further studies of audiovisual interactions in cochlear implant users

    Adaptation of eye and hand movements to target displacements of different size

    Get PDF
    Previous work has documented that the direction of eye and hand movements can be adaptively modified using the double-step paradigm. Here we report that both motor systems adapt not only to small direction steps (5Β° gaze angle) but also to large ones (28Β° gaze angle). However, the magnitude of adaptation did not increase with step size, and the relative magnitude of adaptation therefore decreased from 67% with small steps to 15% with large steps. This decreasing efficiency of adaptation may reflect the participation of directionally selective neural circuits in double-step adaptation

    Sensory information in perceptual-motor sequence learning: visual and/or tactile stimuli

    Get PDF
    Sequence learning in serial reaction time (SRT) tasks has been investigated mostly with unimodal stimulus presentation. This approach disregards the possibility that sequence acquisition may be guided by multiple sources of sensory information simultaneously. In the current study we trained participants in a SRT task with visual only, tactile only, or bimodal (visual and tactile) stimulus presentation. Sequence performance for the bimodal and visual only training groups was similar, while both performed better than the tactile only training group. In a subsequent transfer phase, participants from all three training groups were tested in conditions with visual, tactile, and bimodal stimulus presentation. Sequence performance between the visual only and bimodal training groups again was highly similar across these identical stimulus conditions, indicating that the addition of tactile stimuli did not benefit the bimodal training group. Additionally, comparing across identical stimulus conditions in the transfer phase showed that the lesser sequence performance from the tactile only group during training probably did not reflect a difference in sequence learning but rather just a difference in expression of the sequence knowledge

    Sensory Processing of Motor Inaccuracy Depends on Previously Performed Movement and on Subsequent Motor Corrections: A Study of the Saccadic System

    Get PDF
    When goal-directed movements are inaccurate, two responses are generated by the brain: a fast motor correction toward the target and an adaptive motor recalibration developing progressively across subsequent trials. For the saccadic system, there is a clear dissociation between the fast motor correction (corrective saccade production) and the adaptive motor recalibration (primary saccade modification). Error signals used to trigger corrective saccades and to induce adaptation are based on post-saccadic visual feedback. The goal of this study was to determine if similar or different error signals are involved in saccadic adaptation and in corrective saccade generation. Saccadic accuracy was experimentally altered by systematically displacing the visual target during motor execution. Post-saccadic error signals were studied by manipulating visual information in two ways. First, the duration of the displaced target after primary saccade termination was set at 15, 50, 100 or 800 ms in different adaptation sessions. Second, in some sessions, the displaced target was followed by a visual mask that interfered with visual processing. Because they rely on different mechanisms, the adaptation of reactive saccades and the adaptation of voluntary saccades were both evaluated. We found that saccadic adaptation and corrective saccade production were both affected by the manipulations of post-saccadic visual information, but in different ways. This first finding suggests that different types of error signal processing are involved in the induction of these two motor corrections. Interestingly, voluntary saccades required a longer duration of post-saccadic target presentation to reach the same amount of adaptation as reactive saccades. Finally, the visual mask interfered with the production of corrective saccades only during the voluntary saccades adaptation task. These last observations suggest that post-saccadic perception depends on the previously performed action and that the differences between saccade categories of motor correction and adaptation occur at an early level of visual processing

    Motor Learning in Children with Neurofibromatosis Type I

    Get PDF
    The aim of this study was to quantify the frequently observed problems in motor control in Neurofibromatosis type 1 (NF1) using three tasks on motor performance and motor learning. A group of 70 children with NF1 was compared to age-matched controls. As expected, NF1 children showed substantial problems in visuo-motor integration (Beery VMI). Prism-induced hand movement adaptation seemed to be mildly affected. However, no significant impairments in the accuracy of simple eye or hand movements were observed. Also, saccadic eye movement adaptation, a cerebellum dependent task, appeared normal. These results suggest that the motor problems of children with NF1 in daily life are unlikely to originate solely from impairments in motor learning. Our findings, therefore, do not support a general dysfunction of the cerebellum in children with NF1

    Saccadic Eye Movements Minimize the Consequences of Motor Noise

    Get PDF
    The durations and trajectories of our saccadic eye movements are remarkably stereotyped. We have no voluntary control over these properties but they are determined by the movement amplitude and, to a smaller extent, also by the movement direction and initial eye orientation. Here we show that the stereotyped durations and trajectories are optimal for minimizing the variability in saccade endpoints that is caused by motor noise. The optimal duration can be understood from the nature of the motor noise, which is a combination of signal-dependent noise favoring long durations, and constant noise, which prefers short durations. The different durations of horizontal vs. vertical and of centripetal vs. centrifugal saccades, and the somewhat surprising properties of saccades in oblique directions are also accurately predicted by the principle of minimizing movement variability. The simple and sensible principle of minimizing the consequences of motor noise thus explains the full stereotypy of saccadic eye movements. This suggests that saccades are so stereotyped because that is the best strategy to minimize movement errors for an open-loop motor system
    • …
    corecore