16 research outputs found

    Distinct Regions of the Large Extracellular Domain of Tetraspanin CD9 Are Involved in the Control of Human Multinucleated Giant Cell Formation

    Get PDF
    Multinucleated giant cells, formed by the fusion of monocytes/macrophages, are features of chronic granulomatous inflammation associated with infections or the persistent presence of foreign material. The tetraspanins CD9 and CD81 regulate multinucleated giant cell formation: soluble recombinant proteins corresponding to the large extracellular domain (EC2) of human but not mouse CD9 can inhibit multinucleated giant cell formation, whereas human CD81 EC2 can antagonise this effect. Tetraspanin EC2 are all likely to have a conserved three helix sub-domain and a much less well-conserved or hypervariable sub-domain formed by short helices and interconnecting loops stabilised by two or more disulfide bridges. Using CD9/CD81 EC2 chimeras and point mutants we have mapped the specific regions of the CD9 EC2 involved in multinucleated giant cell formation. These were primarily located in two helices, one in each sub-domain. The cysteine residues involved in the formation of the disulfide bridges in CD9 EC2 were all essential for inhibitory activity but a conserved glycine residue in the tetraspanin-defining ‘CCG’ motif was not. A tyrosine residue in one of the active regions that is not conserved between human and mouse CD9 EC2, predicted to be solvent-exposed, was found to be only peripherally involved in this activity. We have defined two spatially-distinct sites on the CD9 EC2 that are required for inhibitory activity. Agents that target these sites could have therapeutic applications in diseases in which multinucleated giant cells play a pathogenic role

    A highly carbon-efficient and techno-economically optimized process for the renewable-assisted synthesis of gas to liquid fuels, ammonia, and urea products

    Full text link
    Carbon dioxide conversion into beneficial products has received very much attention in recent years to decrease industrial CO2 emissions. In this context, integration of gas to liquids (GTL) process with an iron-based Fischer-Tropsch (FT) reactor with ammonia and urea synthesis plants was investigated. The main motivation of the proposed integration is to reuse a released CO2 stream from the GTL process and to enhance the commercial process economy. The required hydrogen for ammonia comes from polymer electrolyte membrane (PEM) electrolyzers running by solar power. Latin hypercube design (LHD) approach was applied to model the profitability and carbon efficiency of the process. Optimization was conducted to maximize the carbon efficiency and profit index of the overall process using the model-based calibration (MBC) toolbox of MATLAB. The results demonstrated that at the optimum case, the proposed integration is capable of producing 48 t/h of urea and also utilizing about 35 t/h of CO2 produced in the GTL process. The results were compared with another configuration in which a cobalt-based FT reactor was integrated with ammonia and urea processes. The results suggest that profitability, carbon efficiency, and urea production of the process configuration with a Co-based FT reactor is higher than the iron-based configuration while the wax production rate of the iron-based configuration is higher than that of the Co-based process. Techno-economic feasibility study of the zero CO2 emission process represents that the carbon efficiency of around 100% could be obtained

    Maximizing the profitability of integrated Fischer-Tropsch GTL process with ammonia and urea synthesis using response surface methodology

    Full text link
    © 2019 Elsevier Ltd. The integration of a natural gas to liquids (GTL) process with ammonia and urea synthesis units was conducted to utilize the emitted CO2 of the GTL process for the urea synthesis. The feedstocks of the ammonia synthesis unit including hydrogen and nitrogen were provided by a polymer electrolyte membrane (PEM) electrolyzer and air separation unit (ASU) of the GTL process, respectively. The required power for the PEM modules was assumed to be supplied by the surplus generated power of the GTL process. To enhance the overall carbon efficiency and profitability of the three processes, the emitted CO2 from the GTL process was utilized in the urea synthesis unit. Multi-objective optimization approach was conducted to determine the optimal values of carbon efficiency and wax production rate of the GTL process. Objective functions were calculated by response surface methodology with second-order polynomial regression. The degrees of freedom were defined as follows: Unpurged ratio of recycled tail gas from Fischer-Tropsch (FT) reactor, recycle ratio of the GTL tail gas to the FT reactor, CO2 removal percentage from the GTL process synthesis gas (syngas) section, steam to carbon ratio to pre-reformer, molar flow of feed to the ammonia synthesis unit, and CO2 intake to the urea unit. The presented integration results in the production of about 434,000»tonnes/year urea in addition to the FT-derived products. 13.71% (37»tonnes/h) of the produced CO2 in the GTL process is utilized in the urea production unit and the profitability of the integrated process is enhanced by 8%
    corecore