22 research outputs found

    Low Numbers of FOXP3 Positive Regulatory T Cells Are Present in all Developmental Stages of Human Atherosclerotic Lesions

    Get PDF
    BACKGROUND: T cell mediated inflammation contributes to atherogenesis and the onset of acute cardiovascular disease. Effector T cell functions are under a tight control of a specialized T cell subset, regulatory T cells (Treg). At present, nothing is known about the in situ presence of Treg in human atherosclerotic tissue. In the present study we investigated the frequency of naturally occurring Treg cells in all developmental stages of human atherosclerotic lesions including complicated thrombosed plaques. METHODOLOGY: Normal arteries, early lesions (American Heart Association classification types I, II, and III), fibrosclerotic plaques (types Vb and Vc) and 'high risk' plaques (types IV, Va and VI) were obtained at surgery and autopsy. Serial sections were immunostained for markers specific for regulatory T cells (FOXP3 and GITR) and the frequency of these cells was expressed as a percentage of the total numbers of CD3+ T cells. Results were compared with Treg counts in biopsies of normal and inflammatory skin lesions (psoriasis, spongiotic dermatitis and lichen planus). PRINCIPLE FINDINGS: In normal vessel fragments T cells were virtually absent. Treg were present in the intima during all stages of plaque development (0.5-5%). Also in the adventitia of atherosclerotic vessels Treg were encountered, in similar low amounts. High risk lesions contained significantly increased numbers of Treg compared to early lesions (mean: 3.9 and 1.2%, respectively). The frequency of FOXP3+ cells in high risk lesions was also higher compared to stable lesions (1.7%), but this difference was not significant. The mean numbers of intimal FOXP3 positive cells in atherosclerotic lesions (2.4%) was much lower than those in normal (24.3%) or inflammatory skin lesions (28%). CONCLUSION: Low frequencies of Treg in all developmental stages of human plaque formation could explain the smoldering chronic inflammatory process that takes place throughout the longstanding course of atherosclerosis

    Identification of Vascular and Hematopoietic Genes Downstream of etsrp by Deep Sequencing in Zebrafish

    Get PDF
    The transcription factor etsrp/Er71/Etv2 is a master control gene for vasculogenesis in all species studied to date. It is also required for hematopoiesis in zebrafish and mice. Several novel genes expressed in vasculature have been identified through transcriptional profiling of zebrafish embryos overexpressing etsrp by microarrays. Here we re-examined this transcriptional profile by Illumina RNA-sequencing technology, revealing a substantially increased number of candidate genes regulated by etsrp. Expression studies of 50 selected candidate genes from this dataset resulted in the identification of 39 new genes that are expressed in vascular cells. Regulation of these genes by etsrp was confirmed by their ectopic induction in etsrp overexpressing and decreased expression in etsrp deficient embryos. Our studies demonstrate the effectiveness of the RNA-sequencing technology to identify biologically relevant genes in zebrfish and produced a comprehensive profile of genes previously unexplored in vascular endothelial cell biology

    Bovenberg 91a, Bergambacht

    No full text
    Onderzoeksrappor

    The findings of meta-analysis on structural changes by pain-related regions: Gray matter.

    Get PDF
    <p>See <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0094300#pone-0094300-t003" target="_blank">Table 3</a> for the abbreviations of the brain regions. The asterisk denotes that the finding was derived from a ROI-specific analysis. Upward and downward arrows denote positive and negative changes, respectively (without showing the sub-region of the change). a, anterior; m, mid; p, posterior; i, inferior; oribitofrontal; vl, ventrolateral; dl, dorsolateral; PF, connection with the prefrontal cortex; TP, connection with the temporal cortex.</p>1<p>cortical thickness; <sup>2</sup>gray matter volume.</p

    Hypothermic oxygenated machine perfusion of the human donor pancreas

    No full text
    Background Transplantation of beta cells by pancreas or islet transplantation is the treatment of choice for a selected group of patients suffering from type 1 diabetes mellitus. Pancreata are frequently not accepted for transplantation, because of the relatively high vulnerability of these organs to ischemic injury. In this study, we evaluated the effects of hypothermic machine perfusion (HMP) on the quality of human pancreas grafts. Methods Five pancreata derived from donation after circulatory death (DCD) and 5 from donation after brain death (DBD) donors were preserved by oxygenated HMP. Hypothermic machine perfusion was performed for 6 hours at 25 mm Hg by separate perfusion of the mesenteric superior artery and the splenic artery. Results were compared with those of 10 pancreata preserved by static cold storage. Results During HMP, homogeneous perfusion of the pancreas could be achieved. Adenosine 5′-triphosphate concentration increased 6,8-fold in DCD and 2,6-fold in DBD pancreata. No signs of cellular injury, edema or formation of reactive oxygen species were observed. Islets of Langerhans with good viability and in vitro function could be isolated after HMP. Conclusions Oxygenated HMP is a feasible and safe preservation method for the human pancreas that increases tissue viability.</p

    Clinical-Grade Isolated Human Kidney Perivascular Stromal Cells as an Organotypic Cell Source for Kidney Regenerative Medicine

    Get PDF
    Mesenchymal stromal cells (MSCs) are immunomodulatory and tissue homeostatic cells that have shown beneficial effects in kidney diseases and transplantation. Perivascular stromal cells (PSCs) identified within several different organs share characteristics of bone marrow-derived MSCs (BM-MSCs). These PSCs may also possess tissue-specific properties and play a role in local tissue homeostasis. We hypothesized that human kidney-derived PSCs (hkPSCs) would elicit improved kidney repair in comparison with BM-MSCs. Here we introduce a novel, clinical-grade isolation method of hkPSCs from cadaveric kidneys by enriching for the perivascular marker, NG2. hkPSCs show strong transcriptional similarities to BM-MSCs but also show organotypic expression signatures, including the HoxD10 and HoxD11 nephrogenic transcription factors. Comparable to BM-MSCs, hkPSCs showed immunosuppressive potential and, when cocultured with endothelial cells, vascular plexus formation was supported, which was specifically in the hkPSCs accompanied by an increased NG2 expression. hkPSCs did not undergo myofibroblast transformation after exposure to transforming growth factor-β, further corroborating their potential regulatory role in tissue homeostasis. This was further supported by the observation that hkPSCs induced accelerated repair in a tubular epithelial wound scratch assay, which was mediated through hepatocyte growth factor release. In vivo, in a neonatal kidney injection model, hkPSCs reintegrated and survived in the interstitial compartment, whereas BM-MSCs did not show this potential. Moreover, hkPSCs gave protection against the development of acute kidney injury in vivo in a model of rhabdomyolysis-mediated nephrotoxicity. Overall, this suggests a superior therapeutic potential for the use of hkPSCs and their secretome in the treatment of kidney diseases. Stem Cells Translational Medicine 2017;6:405-418

    Vascular bioengineering of scaffolds derived from human discarded transplant kidneys using human pluripotent stem cell-derived endothelium

    Get PDF
    The bioengineering of a replacement kidney has been proposed as an approach to address the growing shortage of donor kidneys for the treatment of chronic kidney disease. One approach being investigated is the recellularization of kidney scaffolds. In this study, we present several key advances toward successful re-endothelialization of whole kidney matrix scaffolds from both rodents and humans. Based on the presence of preserved glycosoaminoglycans within the decelullarized kidney scaffold, we show improved localization of delivered endothelial cells after preloading of the vascular matrix with vascular endothelial growth factor and angiopoietin 1. Using a novel simultaneous arteriovenous delivery system, we report the complete re-endothelialization of the kidney vasculature, including the glomerular and peritubular capillaries, using human inducible pluripotent stem cell -derived endothelial cells. Using this source of endothelial cells, it was possible to generate sufficient endothelial cells to recellularize an entire human kidney scaffold, achieving efficient cell delivery, adherence, and endothelial cell proliferation and survival. Moreover, human re-endothelialized scaffold could, in contrast to the non-re-endothelialized human scaffold, be fully perfused with whole blood. These major advances move the field closer to a human bioengineered kidney
    corecore