435 research outputs found

    Studies of current collection configurations and sealing for tubular hybrid-DCFC

    Get PDF
    Direct Carbon Fuel Cells (DCFC) offer efficient conversion of coal or biomass derived carbons to electricity. A Hybrid Direct Carbon Fuel Cell (HDCFC) is a type of DCFCs that combines solid oxide cell geometry with a molten carbonate fuel cell electrode. This study focused on investigating different current collection configurations and sealant for tubular HDCFC concept. A HDCFC used a gadolinia doped ceria (GDC) or a YSZ as the electrolyte, in composites with NiO and LSM as the anode and the cathode, respectively. Three different current collection configurations of HDCFC were investigated by AC impedance in order to study the electrochemical phenomena that occur at the electrodes surface. The AC impedance results showed that both the surface area and the position of the current collector inside of the anode chamber affect drastically both the series resistance (Rs) and the polarisation resistance (Rp) values. The lowest total resistance (Rtot) was achieved on Configuration b with silver wire interwoven nickel mesh attached to the side of the anode wall by silver paste (Rtot = 2.98 Ω) and while the highest Rtot was achieved on the configuration c with silver wire interwoven nickel mesh inserted into the mixture of carbon and carbonate (Rtot = 149 Ω). The leak test carried out on several sealants demonstrated that composite sealants of Toku P-24 paste and an alumina silicate disc produced a low degree of leaks due to both the high resistance to the carbonate mixture and high density sealing after curing compared to the ceramabond.PostprintPeer reviewe

    Comparative study of durability of hybrid direct carbon fuel cells with anthracite coal and bituminous coal

    Get PDF
    The author would like to acknowledge the funding support of “Efficient Conversion of Coal to Electricity-Direct Coal Fuel Cell” with the grant number “RFCR-CT-2011-00004” from the Research Fund for Coal & Steel of the European commission. CJ acknowledges the Royal Society of Edinburgh for a RSE BP Hutton Prize in Energy Innovation.Direct carbon fuel cells offer the opportunity of generating energy from coal at high efficiency as an alternative to the procedure of conventional power plants. In this study, raw anthracite coal and raw bituminous coal were investigated in a hybrid direct carbon fuel cell (HDCFC), which was a combination of a solid oxide fuel cell and a molten carbonate fuel cell. Mechanical mixing was confirmed to be an efficient method of mixing coal with carbonate. The coal samples had different properties, for example, carbon content, hydrogen content, volatile matter and impurities. The results showed that the maximum power density obtained by the cell with anthracite coal was similar to that obtained by the cell with bituminous coal. It was found that the total power output from coal in HDCFCs mostly depended on the carbon content, while volatile matter, hydrogen content, moisture, etc. had an effect on the short-term durability. HDCFCs were kept operating for more than 120 h with 1.6 g coal. This study demonstrates that energy can be generated efficiently by employing anthracite and bituminous coal in hybrid direct carbon fuel cells.PostprintPeer reviewe

    Periodicities and Plasma Density Structure of Jupiter’s Dawnside Magnetosphere

    Get PDF
    The ability to quantify variations in magnetic field topology and density within Jupiter’s magnetosphere is an important step in understanding the overall structure and dynamics. The Juno spacecraft has provided a rich data set in the dawnside magnetosphere. The recent Grid Agnostic MHD for Extended Research Applications (GAMERA) global simulation study by Zhang et al. (2021) showed a highly structured plasmadisc with closed magnetic field lines mapping between the outer dawn-tail flank and the high latitude polar region. To test these model predictions, we examined Juno’s magnetic field data and electron/energetic particle data to categorize portions of orbits 1-15 into one of three regions based on plasma confinement: the flux pileup region, the intermediate region, and the plasmadisc region. For each region we examined periodicities from magnetic field fluctuations and particle density fluctuations on the 1-10 hours time scale. Periodicities on this time scale could relate to internal (e.g. plasmadisc structure) or external processes (e.g. Kelvin-Helmholtz vortices). Similar analysis was performed on the GAMERA simulation with the data split into two regions, an outer (150 \u3e R \u3e 60) region and an inner (R \u3c 60) region. Finally, using published density moments from Huscher et al. (2021) we compared the relative density variations of the Juno moments and the GAMERA simulation to further understand the overall structure and dynamics of the plasmadisc. The agreement between data and simulation supports the existence of such a highly structured plasmadisc

    4-(4-Nitro­benzene­sulfonamido)pyri­dinium chloride

    Get PDF
    In the title compound, C11H10N3O4S+·Cl−, the benzene ring makes an angle of 89.2 (1)° with the pyridinium ring. The dihedral angle between the nitro group and the benzene ring is 15.7 (1)°. The crystal structure is stabilized by N—H⋯Cl hydrogen bonds

    4-(4-Nitro­benzene­sulfonamido)pyridinium nitrate

    Get PDF
    A short C—N distance [1.394 (2) Å] in the title compound, C11H10N3O4S+·NO3 −, is indicative of some conjugation of the sulfonamide π electrons with those of the pyridinium ring. The crystal structure is stabilized by N—H⋯O hydrogen bonds

    RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord

    Get PDF
    ALS is a rapidly progressive, devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression, and molecular insights into pathogenesis and progression are sorely needed. In that context, we used high-depth, next generation RNA sequencing (RNAseq, Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned \u3e50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2, DEseq2, EdgeR) for identification of differentially expressed genes (DEG’s). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples, with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNFα-induced protein 2 (TNFAIP2) as a major network “hub” gene (WGCNA). Using the oPOSSUM algorithm, we analyzed transcription factors (TF) controlling expression of the nine DEG/hub genes in the ALS samples and identified TF’s involved in inflammation (NFkB, REL, NFkB1) and macrophage function (NR1H2::RXRA heterodimer). Transient expression in human iPSC-derived motor neurons of TNFAIP2 (also a DEG identified by all three algorithms) reduced cell viability and induced caspase 3/7 activation. Using high-density RNAseq, multiple algorithms for DEG identification, and an unsupervised gene co-expression network approach, we identified significant elevation of inflammatory processes in ALS spinal cord with TNF as a major regulatory molecule. Overexpression of the DEG TNFAIP2 in human motor neurons, the population most vulnerable to die in ALS, increased cell death and caspase 3/7 activation. We propose that therapies targeted to reduce inflammatory TNFα signaling may be helpful in ALS patients

    Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism

    Get PDF
    BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations

    Short-term variability of biomarkers of proteinase activity in patients with emphysema associated with type Z alpha-1-antitrypsin deficiency

    Get PDF
    BACKGROUND: The burden of proteinases from inflammatory cells in the lung of subjects with type Pi ZZ of alpha-1-antitrypsin deficiency is higher than in those without the deficiency. Cross-sectional studies have shown increased levels of biomarkers of extracellular matrix degradation in vivo. Longitudinal variability of these biomarkers is unknown but desirable for clinical studies with proteinase inhibitors. METHODS: We measured three different types of biomarkers, including desmosines, elastase-formed fibrinogen fragments and heparan sulfate epitope JM403, in plasma and urine for a period of 7 weeks in a group of 12 patients who participated in a placebo-controlled study to assess the safety of a single inhalation of hyaluronic acid. RESULTS: Effect of study medication on any of the biomarkers was not seen. Baseline desmosines in plasma and urine correlated with baseline CO diffusion capacity (R = 0.81, p = 0.01 and R = 0.65, p = 0.05). Mean coefficient of variation within patients (CVi) for plasma and urine desmosines was 18.7 to 13.5%, respectively. Change in urinary desmosine levels correlated significantly with change in plasma desmosine levels (R = 0.84, p < 0.01). Mean CVi for fibrinogen fragments in plasma was 20.5% and for JM403 in urine was 27.8%. No correlations were found between fibrinogen fragments or JM403 epitope and desmosines. CONCLUSION: We found acceptable variability in our study parameters, indicating the feasibility of their use in an evaluation of biochemical efficacy of alpha-1-antitrypsin augmentation therapy in Pi Z subjects

    Should we welcome robot teachers?

    Get PDF
    Abstract Current uses of robots in classrooms are reviewed and used to characterise four scenarios: (s1) Robot as Classroom Teacher; (s2) Robot as Companion and Peer; (s3) Robot as Care-eliciting Companion; and (s4) Telepresence Robot Teacher. The main ethical concerns associated with robot teachers are identified as: privacy; attachment, deception, and loss of human contact; and control and accountability. These are discussed in terms of the four identified scenarios. It is argued that classroom robots are likely to impact children’s’ privacy, especially when they masquerade as their friends and companions, when sensors are used to measure children’s responses, and when records are kept. Social robots designed to appear as if they understand and care for humans necessarily involve some deception (itself a complex notion), and could increase the risk of reduced human contact. Children could form attachments to robot companions (s2 and s3), or robot teachers (s1) and this could have a deleterious effect on their social development. There are also concerns about the ability, and use of robots to control or make decisions about children’s behaviour in the classroom. It is concluded that there are good reasons not to welcome fully fledged robot teachers (s1), and that robot companions (s2 and 3) should be given a cautious welcome at best. The limited circumstances in which robots could be used in the classroom to improve the human condition by offering otherwise unavailable educational experiences are discussed
    corecore