6,144 research outputs found
Linear and nonlinear traveling edge waves in optical honeycomb lattices
Traveling unidirectional localized edge states in optical honeycomb lattices are analytically constructed. They are found in honeycomb arrays of helical waveguides designed to induce a periodic pseudomagnetic field varying in the direction of propagation. Conditions on whether a given pseudofield supports a traveling edge mode are discussed; a special case of the pseudofields studied agrees with recent experiments. Interesting classes of dispersion relations are obtained. Envelopes of nonlinear edge modes are described by the classical one-dimensional nonlinear Schrödinger equation along the edge. Nonlinear states termed edge solitons are predicted analytically and are found numerically
Adiabatic dynamics of edge waves in photonic graphene
The propagation of localized edge modes in photonic honeycomb lattices, formed from an array of adiabatically varying periodic helical waveguides, is considered. Asymptotic analysis leads to an explicit description of the underlying dynamics. Depending on parameters, edge states can exist over an entire period or only part of a period; in the latter case an edge mode can effectively disintegrate and scatter into the bulk. In the presence of nonlinearity, a 'time'-dependent one-dimensional nonlinear Schrödinger (NLS) equation describes the envelope dynamics of edge modes. When the average of the 'time varying' coefficients yields a focusing NLS equation, soliton propagation is exhibited. For both linear and nonlinear systems, certain long lived traveling modes with minimal backscattering are found; they exhibit properties of topologically protected states
The clinical utility of routine urinalysis in pregnancy: A prospective study
Objectives: To determine whether routine urinalysis in the antenatal period facilitates diagnosis of pre-eclampsia. Can routine urinalysis during pregnancy be discontinue in women with normal results of dipstick urinalysis and microscopy at the first antenatal visit? Design: Prospective observational study. Setting: A metropolitan public hospital and a private hospital in Sydney (NSW). Participants: One thousand women were enrolled at their first antenatal visit (March to November 1999), and 913 completed the study. Outcome measures: The primary outcome was a diagnosis of de novo hypertension (gestational hypertension, pre-eclampasia, or pre-eclampsia superimposed on chronic hypertension). Results: Thirty-five women had dipstick proteinuria at the first antenatal visit. In 25 (71%) of these women, further dipstick proteinuria was detected during pregnancy, and two (6%) were diagnosed with pre-eclampsia. Of the 867 without dipstick proteinuria at the first visit, 338 (39%) had dipstick proteinuria (> 1+) at some time during pregnancy. There were no statistically significant differences in the proportion of women with and without dipstick proteinuria at their first visit who developed hypertension during pregnancy. Only six women developed proteinuria before the onset of hypertension. Women who had an abnormal result of a midstream urine test at their first visit, compared with women with a normal result, were more likely to have a urinary tract infection diagnosed during pregnancy; however, the numbers were small. Conclusion: In the absence of hypertension, routine urinalysis during pregnancy is a poor predictor of pre-eclampsia. Therefore, after an initial screening urinalysis, routine urinalysis could be eliminated from antenatal care without adverse outcomes for women
Mdivi-1, a mitochondrial fission inhibitor, modulates T helper cells and suppresses the development of experimental autoimmune encephalomyelitis.
BACKGROUND: Unrestrained activation of Th1 and Th17 cells is associated with the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). While inactivation of dynamin-related protein 1 (Drp1), a GTPase that regulates mitochondrial fission, can reduce EAE severity by protecting myelin from demyelination, its effect on immune responses in EAE has not yet been studied.
METHODS: We investigated the effect of Mdivi-1, a small molecule inhibitor of Drp1, on EAE. Clinical scores, inflammation, demyelination and Drp1 activation in the central nervous system (CNS), and T cell responses in both CNS and periphery were determined.
RESULTS: Mdivi-1 effectively suppressed EAE severity by reducing demyelination and cellular infiltration in the CNS. Mdivi-1 treatment decreased the phosphorylation of Drp1 (ser616) on CD4+ T cells, reduced the numbers of Th1 and Th17 cells, and increased Foxp3+ regulatory T cells in the CNS. Moreover, Mdivi-1 treatment effectively inhibited IFN-γ+, IL-17+, and GM-CSF+ CD4+ T cells, while it induced CD4+ Foxp3+ regulatory T cells in splenocytes by flow cytometry.
CONCLUSIONS: Together, our results demonstrate that Mdivi-1 has therapeutic potential in EAE by modulating the balance between Th1/Th17 and regulatory T cells
Recommended from our members
Creating New β-Globin-Expressing Lentiviral Vectors by High-Resolution Mapping of Locus Control Region Enhancer Sequences.
Hematopoietic stem cell gene therapy is a promising approach for treating disorders of the hematopoietic system. Identifying combinations of cis-regulatory elements that do not impede packaging or transduction efficiency when included in lentiviral vectors has proven challenging. In this study, we deploy LV-MPRA (lentiviral vector-based, massively parallel reporter assay), an approach that simultaneously analyzes thousands of synthetic DNA fragments in parallel to identify sequence-intrinsic and lineage-specific enhancer function at near-base-pair resolution. We demonstrate the power of LV-MPRA in elucidating the boundaries of previously unknown intrinsic enhancer sequences of the human β-globin locus control region. Our approach facilitated the rapid assembly of novel therapeutic βAS3-globin lentiviral vectors harboring strong lineage-specific recombinant control elements capable of correcting a mouse model of sickle cell disease. LV-MPRA can be used to map any genomic locus for enhancer activity and facilitates the rapid development of therapeutic vectors for treating disorders of the hematopoietic system or other specific tissues and cell types
Distributed canonical correlation analysis in wireless sensor networks with application to distributed blind source separation
status: publishe
Nonlinear vortex light beams supported and stabilized by dissipation
We describe nonlinear Bessel vortex beams as localized and stationary
solutions with embedded vorticity to the nonlinear Schr\"odinger equation with
a dissipative term that accounts for the multi-photon absorption processes
taking place at high enough powers in common optical media. In these beams,
power and orbital angular momentum are permanently transferred to matter in the
inner, nonlinear rings, at the same time that they are refueled by spiral
inward currents of energy and angular momentum coming from the outer linear
rings, acting as an intrinsic reservoir. Unlike vortex solitons and dissipative
vortex solitons, the existence of these vortex beams does not critically depend
on the precise form of the dispersive nonlinearities, as Kerr self-focusing or
self-defocusing, and do not require a balancing gain. They have been shown to
play a prominent role in "tubular" filamentation experiments with powerful,
vortex-carrying Bessel beams, where they act as attractors in the beam
propagation dynamics. Nonlinear Bessel vortex beams provide indeed a new
solution to the problem of the stable propagation of ring-shaped vortex light
beams in homogeneous self-focusing Kerr media. A stability analysis
demonstrates that there exist nonlinear Bessel vortex beams with single or
multiple vorticity that are stable against azimuthal breakup and collapse, and
that the mechanism that renders these vortexes stable is dissipation. The
stability properties of nonlinear Bessel vortex beams explain the experimental
observations in the tubular filamentation experiments.Comment: Chapter of boo
Development Of Al-B-C Master Alloy Under External Fields
This study investigates the application of external fields in the development of an Al-B-C alloy, with the aim of synthesizing in situ Al3BC particles. A combination of ultrasonic cavitation and distributive mixing was applied for uniform dispersion of insoluble graphite particles in the Al melt, improving their wettability and its subsequent incorporation into the Al matrix. Lower operating temperatures facilitated the reduction in the amount of large clusters of reaction phases, with Al3BC being identified as the main phase in XRD analysis. The distribution of Al3BC particles was quantitatively evaluated. Grain refinement experiments reveal that Al-B-C alloy can act as a master alloy for Al-4Cu and AZ91D alloys, with average grain size reduction around 50% each at 1wt%Al-1.5B-2C additions
- …
