Ion Transport

Edited by

DAVID KEELING

Smith Kline & French Research Limited Welwyn, Hertfordshire, UK

CHRIS BENHAM

Smith Kline & French Research Limited Welwyn, Hertfordshire, UK

Harcourt Brace Jovanovich Publishers

London San Diego New York Berkeley Boston Sydney Tokyo Toronto

88125 386

ACADEMIC PRESS LIMITED 24/28 Oval Road London NW1 7DX

United States Edition published by ACADEMIC PRESS INC. San Dicgo, CA 92101

Copyright © 1989 by ACADEMIC PRESS LIMITED

Except Chapter 12 © US Government

This book is printed on acid-free paper ⊗

All Rights Reserved

No part of this book may be reproduced in any form, photostat, microfilm, or by any other means, without written permission from the publishers

Univ.-Bibliothek

British Library Cataloguing in Publication Data is available

6434 837

ISBN 0-12-403985-5

Typeset by Photographics, Honiton, Devon Printed in Great Britain by St Edmundsbury Press Ltd, Bury St Edmunds, Suffolk

Contributors

- **P.I. Aaronson** Department of Pharmacology, St George's Hospital Medical School, Cranmer Terrace, Tooting, London SW17 ORE, UK
- **M.H. Akabas** Departments of Medicine and Physiology, Columbia University, College of Physicians and Surgeons, 630 W 168th Street, New York, N.Y., USA
- **Q. Al-Awqati** Departments of Medicine and Physiology, Columbia University, College of Physicians and Surgeons, 630 W 168th Street, New York, N.Y., USA
- **R.W. Aldrich** Department of Neurobiology, Stanford University School of Medicine, Stanford, Calif. 94305-5401, USA
- D. Anderson CURE, Wadsworth VA and UCLA, Los Angeles, Calif., USA
- **D. Aures-Fischer** CURE, Wadsworth VA and UCLA, Los Angeles, Calif., USA
- **E.A. Barnard** MRC Molecular Neurobiology Unit, MRC Centre, Hills Road, Cambridge CB2 2QH, UK
- L. Bianchini University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK
- G. Belagi Allergan, Irvine, Calif., USA
- C.D. Benham Smith Kline & French Research Limited, The Frythe, Welwyn, Herts AL5 9AR, UK
- M. Biel Institut für Physiologische Chemie, Medizinische Fakultät, Universität des Saarlandes, D-6650 Homburg/Saar, West Germany
- **T.B. Bolton** Department of Pharmacology, St George's Hospital Medical School, Cranmer Terrace, Tooting, London SW17 ORE, UK

vi Contributors

M.S. Brainard Department of Neurobiology, Stanford University School of Medicine, Stanford, Calif. 94305-5401, USA

- **M.G. Darlison** MRC Molecular Neurobiology Unit, MRC Centre, Hills Road, Cambridge CB2 2QH, UK
- **A.C. Dolphin** Department of Pharmacology, St George's Hospital Medical School, Cranmer Terrace, Tooting, London SW17 ORE, UK
- **A. Edelman** Departments of Medicine and Physiology, Columbia University, College of Physicians and Surgeons, 630 W 168th Street, New York, N.Y., USA
- **D.T. Edmonds** The Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
- **J.C. Ellory** University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK
- **V. Flockerzi** Institut für Physiologische Chemie, Medizinische Fakultät, Universität des Haarlandes, D-6650 Homburg/Saar, West Germany
- **L. Gerlach** Physiologisches Institut, Albert Ludwigs Universität Freiburg, Hermann Herder Strasse 3, D-7800 Freiburg, West Germany
- **R. Greger** Physiologische Institut, Albert Ludwigs Universität Freiburg, Hermann Herder Strasse 3, D-7800 Freiburg, West Germany
- **A.C. Hall** University Laboratory of Physiology, Parks Road, Oxford OX1 3PT, UK
- K. Hall CURE, Wadsworth VA and UCLA, Los Angeles, Calif., USA
- **S. Hering** Department of Pharmacology, St George's Hospital Medical School, Cranmer Terrace, Tooting, London SW17 ORE, UK
- S.J. Hersey Emory University, Atlanta, Georgia, USA
- **P. Hess** Department of Cellular and Molecular Physiology, Harvard Medical School, 25 Shattuck Street, Boston, Mass. 02115, USA
- **B. Hille** Department of Physiology and Biophysics, SJ-40, Washington University, Seattle, Wash. 98195, USA
- **S.B. Hladky** Department of Pharmacology, University of Cambridge, Cambridge CB2 2QD, UK
- **F. Hoffman** Institut für Physiologische Chemie, Medizinische Fakultät, Universität des Saarlandes, D-6650 Homburg/Saar, West Germany

Contributors

S.J.D. Karlish Department of Biochemistry, Weizmann Institute of Science, Rehovoth, Israel

- **K. Kunzelmann** Physiologisches Institut, Albert Ludwigs Universität Freiburg, Hermann Herder Strasse 3, D-7800 Freiburg, West Germany
- **D.W. Landry** Departments of Medicine and Physiology, Columbia University, College of Physicians and Surgeons, 630 W 168th Street, New York, N.Y., USA
- **D.E. Logothetis** Department of Cardiology at Children's Hospital, Harvard Medical School, Boston, Mass. 02115, USA
- **M.L. Mayer** Unit of Neurophysiology and Biophysics, Building 36, Room 2A21, LDN, NICHD, NIH, Bethesda, Md. 20892, USA
- **J. Marshall** MRC Molecular Neurobiology Unit, MRC Centre, Hills Road, Cambridge CB2 2QH, UK
- **J.E. Merritt** Smith Kline & French Research Limited, The Frythe, Welwyn, Herts AL5 9AR, UK
- **K. Munson** CURE, Wadsworth VA and UCLA, Los Angeles, Calif., USA
- **R.K. Nakamoto** Department of Human Genetics & Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Conn. 06510, USA
- M.R. Plummer Department of Cellular and Molecular Physiology, Harvard Medical School, 25 Shattuck Street, Boston, Mass. 02115, USA
- **H. Porzig** Department of Pharmacology, University of Berne, CH-3010, Berne, Switzerland
- **R. Rao** Department of Human Genetics & Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Conn. 06510, USA
- **C. Redhead** Departments of Medicine and Physiology, Columbia University, College of Physicians and Surgeons, 630 W 168th Street, New York, N.Y., USA
- **H. Reuter** Department of Pharmacology, University of Berne, CH-3010 Berne, Switzerland
- **T.J. Rink** Smith Kline & French Research Limited, The Frythe, Welwyn, Herts AL5 9AR, UK

viii Contributors

P. Ruth Institut für Physiologisches Chemie, Medizinische Fakultät, Universität des Saarlandes, D-6650 Homburg/Saar, West Germany

- G. Sachs CURE, Wadsworth VA and UCLA, Los Angeles, Calif., USA
 D.B. Sattelle AFRC Unit of Insect Neurophysiology and Pharmacology,
 Department of Zoology, University of Cambridge, Cambridge CB2 3BJ,
 UK
- **R.H. Scott** Department of Pharmacology, St George's Hospital Medical School, Cranmer Terrace, Tooting, London SW17 ORE, UK
- **C.W. Slayman** Department of Human Genetics & Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Conn. 06510, USA
- **C.K. Solc** Department of Neurobiology, Stanford University School of Medicine, Stanford, Calif. 94305-5401, USA
- W.N. Zagotta Department of Neurobiology, Stanford University School of Medicine, Stanford, Calif. 94305-5401, USA

Contents

PA	ART 1: P-type Cation Pumps
	tracytosolic Functional Domains of the H+,K+-ATPase
G.	omplex Sachs, K. Munson, K. Hall, D. Aures-Fischer, D. Anderson, V. lagi and S.J. Hersey
1 2 3	Introduction
	Acknowledgements
	ne Mechanism of Cation Transport by the Na ⁺ ,K ⁺ -ATPase
ì	Introduction
2	The transport mechanism
3	Cation occlusion
4	Cation selectivity
5	Trans effects of Na '
6	Cation slippage fluxes
7	Electrogenic potentials
8	Effects of voltage on the pump
9	The structure of the cation-binding sites
	Future directions
ιO	Acknowledgements.
	References

xii Contents

	ner P-type ATPases jini Rao, Robert K. Nakamoto and Carolyn W. Slayman
i I	Introduction.
2	Nucleotide binding.
3	Sequence comparisons
4	Structure of the nucleotide-binding site
	Acknowledgements.
	References
P#	ART 2: Ion Channels and their Modulation
	oltage-gated Sodium Channels since 1952
1	Introduction
2	Distribution
3	Molecular Structure
4	Gating
5	Selectivity filter and pore
6	Modulated receptors
7	Conclusion
	Acknowledgements.
	References
M Ri M	ngle Potassium Channels in Drosophila Nerve and uscle chard W. Aldrich, Charles K. Solc, William N. Zagotta and ichael S. Brainard
1	Introduction.
2	Advantages of <i>Drosophila</i> as a system for the study of ion channels
	Tissue culture systems
	Λ_1 channels
4	
3 4 5	Λ_2 channels
4	
4 5	Λ_2 channels
4 5 6	A_2 channels
4 5 6 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4 5 6 7 8	$\begin{array}{c} A_2 \text{ channels} & \dots & \dots & \dots \\ K_D \text{ channels} & \dots & \dots & \dots \\ K_1 \text{ channels} & \dots & \dots & \dots \\ K_O \text{ channels} & \dots & \dots & \dots \\ K_{ST} \text{ channel} & \dots & \dots & \dots \\ Shaker \text{ differential splicing does not explain the diversity of} \end{array}$
4 5 6 7 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
4 5 6 7 8	$\begin{array}{c} A_2 \text{ channels} & \dots & \dots & \dots \\ K_D \text{ channels} & \dots & \dots & \dots \\ K_1 \text{ channels} & \dots & \dots & \dots \\ K_O \text{ channels} & \dots & \dots & \dots \\ K_{ST} \text{ channel} & \dots & \dots & \dots \\ Shaker \text{ differential splicing does not explain the diversity of} \end{array}$
	$\begin{array}{c} A_2 \text{ channels} & \dots & \dots & \dots \\ K_D \text{ channels} & \dots & \dots & \dots \\ K_1 \text{ channels} & \dots & \dots & \dots \\ K_O \text{ channels} & \dots & \dots & \dots \\ K_{ST} \text{ channel} & \dots & \dots & \dots \\ Shaker \text{ differential splicing does not explain the diversity of channel types} & \dots & \dots & \dots \\ \end{array}$

Contents	xiii
Contents	

6	Calcium Channels: Properties and Modulation H. Reuter and H. Porzig	;
	1 Introduction	
	2 Ca ²⁺ channel selectivity	
	3 Ca ²⁺ channel gating	
	4 Ca ²⁺ channel modulation	
	Acknowledgements	
	References	
7	Calcium Channels in Mammalian Sympathetic Neurons and PC12 Cells	
	Mark R. Plummer, Peter Hess and Diomedes E. Logothetis	
	1 Introduction	
	2 Results and discussion	
	Acknowledgements	
	References	
8	Voltage-dependent Calcium Channels of Smooth Muscle	
	Cells	1
	T.B. Bolton, S. Hering and P.I. Aaronson	
	1 Introduction	
	2 Inward current	
	3 Conclusions	
	Acknowledgements	
	References	
9	Modulation of Calcium and other Channels by G	
	Proteins: Implications for the Control of Synaptic	
	Transmission	1
	Annette C. Dolphin and Roderick H. Scott	
	I Introduction.	
	2 Modulation of Ca ²⁺ channels by G protein activation	
	3 Evidence for G proteins coupling to K ⁺ channels	
	4 Role of G protein-coupled ion channels in the modulation of	
	synaptic transmission	
	5 Conclusion	
	References	
10	The Structure of the Skeletal Muscle Calcium Channel	
	Peter Ruth, Veit Flockerzi, Martin Biel and Franz Hoffman	
	1 Introduction	
	2 Structural composition of the purified skeletal muscle Ca ²⁺ channel	

xiv Contents

	3 Phosphorylation of the purified CaCB-receptor	148
	channel	150
	5 Identification of L-type Ca ²⁺ channel proteins in other tissues 6 Reconstitution of an L-type Ca ²⁺ channel from the skeletal	
	muscle CaCB-receptor	153
	7 Conclusions	154
	Acknowledgements	154 155
11	Structural Characteristics of Cation and Anion Channels Directly Operated by Agonists	159
	E.A. Barnard, M.G. Darlison, J. Marshall and D.B. Sattelle	
	Classes of receptor-operated channels	159 161 162 166 171 174 175
12	Mammalian CNS	183
12	Mammalian CNS Mark L. Mayer	
12	Mammalian CNS Mark L. Mayer 1 Introduction.	183 185 186 188
12	Mammalian CNS Mark L. Mayer 1 Introduction.	183 185 186
12	Mammalian CNS Mark L. Mayer 1 Introduction.	183 185 186 188 189 191

Contents xv

PART 3: Ions and Fluid	Transport
------------------------	-----------

14	Pathways for Cell Volume Regulation via Potassium and Chloride Loss	217
	A.C. Hall, L. Bianchini and J.C. Ellory	
	1 Introduction: transport processes involved in RVD	217 222 224 226 228 229 231 231
15	Epithelial Chloride Channels: Properties and Regulation R. Greger, L. Gerlach and K. Kunzelmann	237
	1 Introduction. 2 Properties of epithelial Cl ⁻ channels 3 Regulation of epithelial Cl ⁻ channels 4 Conclusion Acknowledgements. References	237 238 241 244 245 245
16	Purification and Reconstitution of the Epithelial Chloride Channel Donald W. Landry, Myles H. Akabas, Christopher Redhead, Aleksander Edelman and Qais Al-Awqati	249
	1 Introduction	249 250 253 257 258 258
	PART 4: Models of Ion Permeation across Membrane	S
17	Models of Ion Permeation through Membranes S.B. Hladky	263
	1 Introduction	263 264

xvi	Contents
-----	----------

	3	Interpretation of experimental data	265 275
18		opics Relating to the Modelling of Ion Channel Function T. Edmonds	279
	1	A threshold model of Na+ channel kinetics	279
	2	A kinetic role for ionizable residues in channel proteins	286 291
Аp	per	ndix: Abstracts of Posters	293
Inc	lex		375
Co	lou	r Plate Between pages 8	and 9

The Structure of the Skeletal Muscle Calcium Channel

PETER RUTH, VEIT FLOCKERZI, MARTIN BIEL and FRANZ HOFFMAN

Institut für Physiologische Chemie, Medizinische Fakultät, Universität des Saarlandes, Homburg/Saar, West Germany

1 Introduction

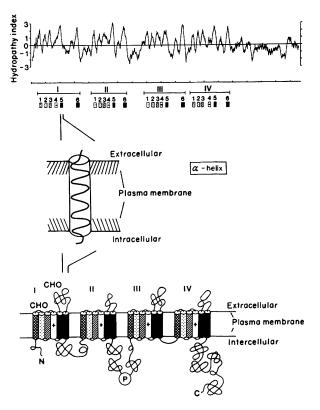
Voltage-activated Ca2+ channels are classified into three types (T, N and L), which differ in their pharmacological behaviour and functional significance (Nowycky et al., 1985). L-type channels are sensitive to organic drugs the Ca²⁺ channel blockers (CaCB) which include the dihydropyridines (1,4-DHPs), the phenylalkylamines (PAAs) and the benzothiazepines (BTZs) (Hofmann et al., 1987). In cardiac muscle, β-adrenoceptor agonists increase the open state probability of this channel type either by phosphorylation of the channel or a channel associated protein via the catalytic subunit of cAMP-dependent protein kinase (Trautwein et al., 1986), or by stabilizing the open state via the α-subunit of the GTP binding protein G_s (Yatani et al., 1987). L-type channels occur in peripheral and central neurons, smooth muscle, invertebrate skeletal muscle and heart. Their biological function in vertebrate skeletal muscle has not been established unequivocally, but probably the channel has the same function as in cardiac muscle, i.e. participating in the maintenance of an adequate amount of intracellular Ca²⁺ for muscle contraction (Ildefonse et al., 1985). However, the channel protein may participate in skeletal muscle excitation contraction-coupling not only as Ca²⁺ channel but also as a voltage sensor (Berwe et al., 1987; Lamb and Walsh, 1987; Rios and Brum, 1987). L-type Ca²⁺ channels of different tissues probably are not identical and will be divided up further

as our knowledge of their electrophysiological and molecular properties, their functional significance and their modulation by hormones, neurotransmitters and drugs expands.

2 Structural composition of the purified skeletal muscle Ca²⁺ channel

Most of the information on the structural composition of the L-type Ca²⁺ channel originates from studies with rabbit skeletal muscle. SDS-gel analysis of the purified skeletal CaCB-receptor yields several stained bands with apparent molecular weights of 165 kDa (α_1), 55 kDa (β) and 32 kDa (γ) in a constant ratio of 1:1.7:1.4 (Sieber et al., 1987). A further protein containing a 130- (α_2) and 28-kDa (δ) disulfide-linked peptide co-purifies in variable amounts with the α_1 -, β - and γ -subunits of the CaCB-receptor. The α_{2} - and the γ -peptides are heavily glycosylated, whereas the α_{1} - and β-subunit contain none or a low amount of carbohydrates (Takahashi et al., 1987). The purified receptor binds all three major classes of Ca²⁺ channel blockers (i.e. DHPs, PAAs and BTZs) in a stereospecific manner. The photo-affinity analogues of the 1,4-DHPs and PAAs, azidopine and LU 49888, label only the 165-kDa (α_1) subunit, indicating that this protein carries the drug receptor sites for 1,4-DHPs and PAAs (Galizzi et al., 1986; Sieber et al., 1987; Tanabe et al., 1987; Striessnig et al., 1986, 1987). The constant stoichiometry of the 165-, 55- and 32-kDa proteins suggests that these proteins are constituents of the Ca²⁺ channel. Further evidence for the existence of a functional complex with this composition comes from studies with antibodies against the α_1 -subunit which precipitate the α_1 -, β- and γ-subunits (Takahashi et al., 1987). Antibodies specific against the α_1 - or β -subunits immunoprecipitates the α_1 - or β -subunits (Leung et al., 1988). Furthermore, antibodies specific against the α_1 -, β - and γ -subunits modulate the Ca2+ current in vivo (Campbell et al., 1988; Morton et al., 1988; Vilven et al., 1988). Attempts to isolate only the α_1 -subunit under non-denaturing conditions have not been successful so far, suggesting that the B- and y-subunits stabilize the channel in a high-affinity CaCB binding conformation. At present, it is not known whether or not the 130/28-kDa protein belongs also to this structure (Leung et al., 1988) or is only a contaminant.

3 Phosphorylation of the purified CaCB-receptor

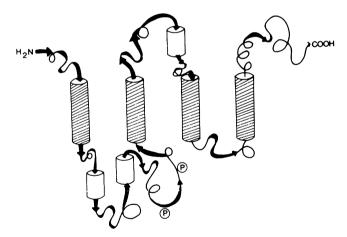

The 165- and 55-kDa subunits of the purified CaCB-receptor are phosphorylated readily by cAMP-dependent protein kinase (Curtis and

	Phosphopeptide number	
Protein kinase	165 kDa	55 kDa
cAMP-kinase	1,10	7
cGMP-kinase	1,2	1,3
Protein kinase C	none	7/8
Casein kinase II	7,11	9,10

Table 1 Kinase-specific phosphopeptides of the skeletal muscle CaCB-receptor

The purified receptor was phosphorylated by each kinase as described by Jahn *et al.*, (1988). The phosphorylated subunits were separated by SDS-gel electrophoresis. Individual gel pieces containing the phosphorylated α_1 - or β -subunit were digested by trypsin over night. The phosphopeptides were then separated by 2-D thin-layer chromatography. The number of the kinase-specific phosphopeptide(s) is shown. See also Jahn *et al.* (1988).

Catterall, 1985; Flockerzi et al., 1986a,b) and other kinases in vitro (Nastainczyk et al., 1987; O'Callahan et al., 1988; Jahn et al., 1988). The α_1 -subunit is a good substrate for cAMP-kinase and casein kinase II. whereas the 55-kDa subunit is preferentially phosphorylated by protein kinase C and cGMP-dependent protein kinase. Two-dimensional peptide maps yield 11 phosphopeptides from the 165-kDa subunit and 11 from the 55-kDa subunit using these kinases (Jahn et al., 1988). With the exception of protein kinase C, each kinase apparently phosphorylates one or two peptides specifically in each subunit (Table 1). Protein kinase C does not phosphorylate specifically a peptide in the 165-kDa peptide, but modifies rapidly peptide 7/8 of the 55-kDa subunit. Neither the 32-kDa nor the 130/28-kDa peptides are phosphorylated by the above-mentioned kinases. At physiological concentrations cAMP-dependent protein kinase incorporates 1 mole phosphate per mole 165-kDa subunit within 10 min (Curtis and Catterall, 1985; Nastainczyk et al., 1987). This suggests that the phosphorylation of this site may be functionally important. A second site is phosphorylated during prolonged incubation. The rapidly phosphorvlated peptide was isolated and sequenced. The phosphorvlated amino acid was identified as Ser 687 of the deduced amino acid sequence of the α_1 -subunit (Röhrkasten et al., 1988). This serine is located in the cytoplasmic loop between transmembrane regions II and III (see Fig. 1). It is possible that in vivo cAMP-dependent phosphorylation of this serine increases the open state probability of the Ca²⁺ channel.


Fig. 1 Hydrophobicity profile and transmembrane topology of the skeletal muscle Ca^{2+} channel α_1 -subunit. The hydrophobicity profile of the α_1 -subunit according to Tanabe *et al.* (1987). Positive indices represent hydrophobic amino acid regions. The protein consists of four homologous domains (I, II, III, IV) each composed of six membrane spanning helices (1, 2, 3, 4, 5, 6). Transmembrane regions are based on their hydropathy value, polarity index and hydrophobic moment analysis according to Chou and Fasman (1978). The homologous regions (I, II, III, IV) each containing six transmembrane spirals are shown linearly. They are supposed to form the ionic pore. The carboxy- and amino-termini are located at the cytoplasmic site of the plasma membrane. The phosphorylation site of cAMP-dependent protein kinase, serine residue 687, is indicated between domains II and III.

4 Structure of the α_1 - and β -subunits of the skeletal muscle Ca²⁺ channel

Identification and cloning of the α_1 - subunit of the Ca^{2+} channel from skeletal muscle was a major step in Ca^{2+} channel research (Tanabe *et al.*,

1987). The cloned rabbit skeletal muscle α_1 -subunit has 29% homology with the voltage-dependent Na $^+$ channel. It is assumed that four homologous regions, each consisting of five hydrophobic α -helices (S1, S2, S3, S5 and S6) and one hydrophilic α -helix (S4), span the membrane and form the Ca²⁺ channel pore (Fig. 1). S4, which is present in each transmembrane region, is a positively charged helix that could act as a voltage sensor. A homologous helix is found in other voltage-activated ion channels, i.e the Na $^+$ channel of cel, fly and rat and the K $^+$ channel of various tissues. The positive charges of the S4 segment could respond to a change in the membrane potential by a transmembrane shift of its positive charges, and thereby affect the open/closed state of the channel.

The primary structure of the rabbit skeletal muscle β -subunit has been deduced from the cloned cDNA. The cDNA has a length of 1.85 kilobase. The deduced peptide consists of 524 amino acids with a M_r of 58 kDa. The primary structure of the β -subunit agrees with that of a peripheral membrane protein. It contains four homologous α -helices (Fig. 2). Analysis of the primary structure reveals two further apparently specific protein kinase C phosphorylation sites. This is interesting since the β -subunit is preferentially phosphorylated by protein kinase C in vitro. Furthermore,

Fig. 2 Predicted secondary structure of the β -subunit of the skeletal muscle Ca²⁺ channel. The secondary structure of the deduced amino acid sequence was predicted by the method of Garnier *et al.* (1978). The β -subunit contains four hydrophilic helical regions (shaded rods), each composed of 26–33 amino acids. The helices are joined by β -sheets (arrows) and coils. These secondary structures are interrupted at three positions by helical structures with a length of 10–15 amino acids (open rods). The *in vitro* phosphorylation sites are indicated by P. The site closer to the amino terminus is the major *in vitro* phosphorylation site of cΛMP-dependent protein kinase.

there is ample evidence that protein kinase C alters L-type channel function in vivo (Kaczmarek, 1987). In addition, the primary sequence contains a site specific for cGMP-dependent protein kinase. This was expected from the in vitro phosphorylation experiments (see Table 1).

The biological significance of these primary structures remains to be elucidated. Antibodies against the β -subunit enhance Ca^{2+} currents through L-type channels and prevent the blocking action of nitrendipine (Vilven *et al.*, 1988), whereas antibodies against the γ -subunit inhibit Ca^{2+} current (Campbell *et al.*, 1988). This suggests that the two smaller subunits of the skeletal muscle Ca^{2+} channel are necessary for proper channel function.

The primary structure of the γ -subunit is not known. However, the primary structure of the 130-kDa (α_2) protein has been deduced from cloned rabbit skeletal muscle cDNA (Ellis et al., 1988). The α_2 protein has the sequence of a hydrophilic protein and may contain up to three transmembrane helices and eight extracellular N-glycosylation sites. This predicted topography is in accordance with the finding that the purified protein is heavily glycosylated. Hybridization studies show that the mRNA for the α_2 protein is expressed in many tissues, whereas the cDNA for the skeletal muscle α_1 -subunit hybridizes only weakly or not at all to the messenger RNA from other tissues (Ellis et al., 1988). Although these data are not conclusive, they support the notion that the 130/28-kDa (α_2/δ) protein may not be an essential part of the calcium channel.

5 Identification of L-type Ca2+ channel proteins in other tissues

A Ca^{2+} channel α_1 -subunit of a slightly larger size than that of rabbit skeletal muscle has been identified in brain, smooth muscle and heart by northern blot analysis of the respective mRNA (Table 2). This difference in size is supported by photo-affinity labelling of the high-affinity receptor for CaCBs. Azidopine and LU 49888 identify a 195-kDa protein in a partially purified preparation of the bovine cardiac muscle CaCB-receptor (Schneider and Hofmann, 1988). An identically sized α -subunit is labelled in hippocampus (Striessnig *et al.*, 1988). These differences are not caused by species differences, since a monoclonal antibody to the α_1 -subunit of rabbit skeletal muscle recognizes the same subunit in the skeletal muscle of guinea pig, hamster, rat, cow and pig, but does not bind to the bovine heart subunit. This suggests that the differences are real and reside in the primary sequence of the α -subunits from different tissues.

		Size of putative α_1 -subunit	
Tissue	Species	Protein (kDa)	mRNA (kB)
Skeletal muscle	rabbit	165	6.2
Heart	cow	195	8.3
Lung	cow		8.2
Brain	guinea pig	195	8.1

Table 2 Size of the putative α -subunit of the Ca²⁺ channel in other tissues

Membranes or a partially purified preparation of the CaCB-receptor were affinity-labelled with azidopine or LU 49888. The molecular weight was determined by SDS-gel electrophoresis. The size of the mRNA was determined by hybridization with a probe derived from the cloned α_1 -subunit of the rabbit skeletal CaCB-receptor. For further detail see Sieber *et al.* (1987), Schneider and Hofmann (1988) and Striessnig *et al.* (1988).

6 Reconstitution of an L-type Ca²⁺ channel from the skeletal muscle CaCB-receptor

The purified dihydropyridine receptor from skeletal muscle has been reconstituted into phospholipid vesicles which were fused with a phospholipid bilayer (Flockerzi et al., 1986a; Hymel et al., 1988; Ma and Coronado, 1988; Pelzer et al., 1988; Talvenheimo et al., 1987). In agreement with whole-cell recording data, the reconstituted protein channel has a singlechannel conductance of about 20 pS (Flockerzi et al., 1986a; Pelzer et al., 1988; Talvenheimo et al., 1987). Its open state probability (p_{Ω}) is reduced by the Ca2+ channel blockers gallopamil and PN 200-110, and increases in the presence of the Ca²⁺ channel agonist Bay K 8644. The p_O is also increased several fold by the addition of ATP Mg and the catalytic subunit of cAMP-dependent protein kinase (Flockerzi et al., 1986a; Hymel et al., 1988; Pelzer et al., 1988). These results suggest that the reconstituted channel has some properties of the cardiac L-type Ca2+ channel. Further analysis of the single-channel kinetics showed that open and closed times of the reconstituted channel are about 10 times longer than that of an in vivo cardiac muscle L-type channel (Pelzer et al., 1988), indicating that the reconstituted channel has properties which differ from that of the cardiac muscle channel. The slower channel kinetics of the purified receptor are not caused by proteolysis of the receptor during purification. The same kinetics were obtained when solubilized microsomal membranes were reconstituted.

Both preparations, the solubilized membranes and the purified receptor, contain a second channel with a conductance around 10 pS (Ma and Coronado, 1988; Pelzer et al., 1988; Talvenheimo et al., 1987). The p_O of the channel showing the smaller conductance was not affected by phosphorylation, Ca^{2+} channel blockers or agonists (Pelzer et al., 1988). So far, an interconversion of a small non-regulated into a large regulated conductance has not been observed (Pelzer et al., 1988). The two conductances could be distinguished further by the voltage-dependence of p_O . The small conductance showed a regular voltage dependence of its open state probability, whereas the large conductance yielded a bell-shaped dependency. p_O was greatest at a membrane potential around 0 mV (Pelzer et al., 1988). These differences in electrophysiological parameters clearly distinguish the two conductances.

7 Conclusions

The biochemical identity of these conductances is not clear at present. Recent reconstitution experiments of the isolated α_1 -subunit suggest that the 165-kDa subunit is the Ca²⁺-conducting unit (Pelzer et al., 1988). This conclusion is supported by experiments in which the cloned cDNA of the α_1 -subunit was expressed in embryonic muscle cells from dysgenic mice (Tanabe et al., 1988). The dysgenic myotubes do not express the 6.5-kB mRNA of the α_1 -subunit and are defective in EC-coupling. The intranuclear injection and the expression of the cloned α_1 -subunit mRNA in myotubes of dysgenic mice restores EC-coupling and a slow L-type Ca²⁺ channel in these cells. Interestingly, the T-tubular voltage sensor and the Ca2+ channel is regained together with the expression of the α_1 -subunit, suggesting that both functions require the α_1 -subunit. These two functions may not depend alone on the presence of the 165-kDa (α_1)-subunit, but correct functioning may require the presence of the other subunits. This conclusion is supported also by the modulatory effect of β - (Vilven et al., 1988) and γ -(Campbell et al., 1988) subunit-specific antibodies on Ca²⁺ current (see above). Furthermore, the survival of a Ca2+ channel reconstituted from T-tubular membranes increases dramatically in the presence of activated G_s (Yatani et al., 1988). It is likely, therefore, that the 165-kDa subunit contains the Ca2+-conducting part of a L-type Ca2+ channel, which requires in vivo the presence of other smaller subunits and G proteins for proper function.

Acknowledgements

We thank Mrs Siepmann for her work on the figures. This work was supported by Fonds der Chemischen Industrie and Deutsche Forschungsgemeinschaft.

References

- Berwe, D., Gottschalk, G. and Lüttgau, C. H. (1987). Effects of the calcium antagonist gallopamil (D600) upon excitation-contraction coupling in toe muscle fibres of the frog. *J. Physiol.* **385**, 693–707.
- Campbell, K. P., Leung, A. T., Sharp, A. H., Imagawa, T. and Kahl, S. D. (1988). Ca²⁺ channel antibodies: Subunit-specific antibodies as probes for structure and function. In *The Calcium Channel: Structure, Function and Implication* (eds M. Morad, W. G. Nayler, S. Kazda and M. Schramm), pp. 586–600. Springer Verlag, Berlin.
- Chou, P. Y. and Fasman, G. D. (1978). Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. 47, 45-148.
- Curtis, B. M. and Catterall, W. A. (1985). Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase. *Proc. Natl Acad. Sci. USA* **82**, 2528–2532.
- Ellis, S. B., Williams, M. E., Ways, N. R., Brenner, R., Sharp, A. H., Leung, A. T., Campbell, K. P., McKenna E., Koch, W. J., Hui, A., Schwartz, A. and Harpold, M. M. (1988). Sequence and expression of mRNAs encoding the α₁ and α₂ subunits of a DHP-sensitive calcium channel. *Science*, **241**, 1661–1664.
- Flockerzi, V., Oeken, H.-J. and Hofmann, F. (1986a). Purification of a functional receptor for calcium channel blockers from rabbit skeletal muscle microsomes. *Eur. J. Biochem.* **161**, 217–224.
- Flockerzi, V., Oeken, H.-J., Hofmann, F., Pelzer, D., Cavaliè, A. and Trautwein, W. (1986b). The purified dihydropyridine binding site from skeletal muscle T-tubules is a functional calcium channel. *Nature* **323**, 66–68.
- Galizzi, D.-P., Borsotto, M., Barhanin, J., Fosset, M. and Lazdunski, M. (1986). Characterization and photoaffinity labeling of receptor sites for the Ca²⁺ channel inhibitors *d-cis*-diltiazem, (±)-bepridil, desmethoxyverapamil, and (+)-PN 200-110 in skeletal muscle transverse tubule membranes. *J. Biol. Chem.* **261**, 1393–1397.
- Garnier, J., Osguthorpe,, D. J. and Robson, B. (1978). Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120, 97–120.
- Hofmann, F., Nastainczyk, W., Röhrkasten, A., Schneider, T. and Sieber, M. (1987). Regulation of the L-type calcium channel. *TIPS* **8**, 393–398.
- Hymel, L., Striessnig, J., Glossmann, H. and Schindler, H. (1988). Purified skeletal muscle 1,4-dihydropyridine receptor forms phosphorylation-dependent oligomeric calcium channels in planar bilayers *Proc. Natl Acad Sci. USA* 85, 4290–4294.
- Ildefonse, M., Jacquemond, V., Rougier, O., Renaud, J. F., Fosset, M. and Lazdunski, M. (1985). Excitation contraction coupling in skeletal muscle: Evidence for a role of slow Ca²⁺ channels using Ca²⁺ channel activators and inhibitors in the dihydropyridine series. *Biochem. Biophys. Res. Commun.* 129, 904–909.
- Jahn, H., Nastainczyk, W., Röhrkasten, A., Schneider, T. and Hofmann, F. (1988). Site specific phosphorylation of the purified receptor for calcium channel blockers by cAMP-, cGMP-dependent protein kinase, protein kinase C, calmodulindependent protein kinase II, and casein kinase II. Eur J. Biochem. 178, 535-542.
- Kaczmarek, L. K. (1987). The role of protein kinase C in the regulation of ion channels and neurotransmitter release. *TINS* **10**, 30–34.
- Lamb, G. D. and Walsh, T. (1987). Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscle of rat and rabbit. J. Physiol. 393, 595-617.

Leung, A. T., Imagawa, T., Block, B., Franzini-Armstrong, C. and Campbell, K.P. (1988). Biochemical and ultrastructural characterization of the 1,4dihydropyridine receptor from rabbit skeletal muscle. J. Biol. Chem. 263, 994–1001.

- Ma, J. and Coronado, R. (1988). Heterogeneity of conductance states in calcium channels of skeletal muscle. *Biophys. J.* **53**, 387–395.
- Morton, M. E., Caffrey, J. M., Brown, A. M. and Froehner, S. C. (1988). Monoclonal antibody to the α₁ subunit of the dihydropyridine-binding complex inhibits calcium currents in BC3H1 myocytes. *J. Biol. Chem.* **263**, 613–616.
- Nastainczyk, W., Röhrkasten, A., Sieber, M., Rudolph, C., Schächtele, C., Marme, D. and Hofmann, F. (1987). Phosphorylation of the purified receptor for calcium channel blockers by cAMP kinase and protein kinase C. Eur. J. Biochem. 169, 137–142.
- Nowycky, M. C., Fox, A. P. and Tsien, R W. (1985). Three types of neuronal calcium channel with different calcium agonist sensitivity. *Nature* **316**, 440-443.
- O'Callahan, C. M., Ptasienski, J. and Hosey, M. M. (1988). Phosphorylation of the 165-kDa dihydropyridine/phenylalkylamine receptor from skeletal muscle by protein kinase C. J. Biol. Chem 263, 17,342–17,349.
- Pelzer, D., Cavalié, A., Flockerzi, V., Hofmann, F. and Trautwein, W. (1988). Reconstitution of solubilized and purified dihydropyridine receptor from skeletal muscle microsomes as two single calcium channel conductances with different functional properties. In *The Calcium Channel: Stucture, Function and Implication* (eds M. Morad, W. G. Nayler, S. Kazda and M. Schramm), pp. 217–230. Springer-Verlag, Berlin.
- Rios, E. and Brum, G. (1987). Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle *Nature* **235**, 717–720.
- Röhrkasten, A., Meyer, H., Nastainczyk, W., Sieber, M. and Hofmann, F. (1988). cAMP-dependent protein kinase rapidly phosphorylates Ser 687 of the rabbit skeletal muscle receptor for calcium channel blockers. J. Biol Chem. 263, 15,325–15,329.
- Schneider, T. and Hofmann, F. (1988). The bovine cardiac receptor for calcium channel blockers is a 195 kDa protein. Eur. J. Biochem. 174, 127-135.
- Sieber, M., Nastainczyk, W., Zubor, V., Wernet, W. and Hofmann, F. (1987). The 165-kDa peptide of the purified skeletal muscle dihydropyridine receptor contains the known regulatory sites of the calcium channel. *Eur. J. Biochem.* **167**, 117–122.
- Striessnig, J., Moosburger, K., Goll, D., Ferry, D. R. and Glossmann, H. (1986). Stereoselective photoaffinity labelling of the purified 1,4-dihydropyridine receptor of the voltage-dependent calcium channel. Eur. J. Biochem. 161, 603–609.
- Striessnig, J., Knaus, H.-G., Grabner, M., Moosburger, K., Seitz, W., Lietz, H. and Glossmann, H. (1987). Photoaffinity labelling of the phenylalkylamine receptor of the skeletal muscle transverse-tubule calcium channel. *FEBS Lett.* **212**, 247–253.
- Striessnig, J., Knaus, H.-G. and Glossmann, H. (1988). Photoaffinity-labelling of the calcium-channel-associated 1,4-dihydropyridine and phenylalkylamine receptor in guinea-pig hippocampus. *Biochem. J.* **253**, 39–47.
- Takahashi, M., Seagar, M. J., Jones, J. F., Reber, B. F. X. and Catterall, W. A. (1987). Subunit structure of dihydropyridine-sensitive calcium channel from skeletal muscle. *Proc. Natl Acad. Sci. USA* 84, 5478–5482.
- Talvenheimo, J. A., Worley, III J. F. and Nelson M. T. (1987). Heterogeneity of calcium channels from a purified dihydropyridine receptor preparation. *Biophys.* J. 52, 891–899.

- Tanabe, T., Takeshima, H., Mikami, A., Flockerzi, V., Takahashi, H., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T. and Numa, S. (1987). Primary structure of the receptor for calcium channel blockers from skeletal muscle. *Nature (Lond.)* 328, 313–318.
- Tanabe, T., Beam, K. G., Powell, J. A. and Numa, S. (1988). Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. *Nature*, 366, 134–139.
- Trautwein, W., Kameyama, M., Hescheler, J. and Hofmann, F. (1986). Cardiac calcium channels and their transmitter modulation. *Progress in Zoology* **33**, 163–182.
- Vilven, J., Leung, A. T., Imagawa, T., Sharp, A. H., Campbell, K. P. and Coronado, R. (1988). Interaction of calcium channels of skeletal muscle with monoclonal antibodies specific for its dihydropyridine receptor. *Biophys. J.* 53, 556a.
- Yatani, A., Codina, J., Imoto, Y., Reeves, J. P., Birnbaumer, L. and Brown, A. M. (1987). A G protein directly regulates mammalian cardiac calcium channels. Science 238, 1288–1292.
- Yatani, A., Imoto, Y., Codina, J., Hamilton, S. L., Brown, A. M. and Birnbaumer, L. (1988). The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Ca²⁺ channels. *J. Biol. Chem.* **263**, 9887–9895.