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Linear and Nonlinear Traveling Edge Waves in Optical Honeycomb Lattices

Mark J. Ablowitz1, Christopher W. Curtis2, Yi-Ping Ma1
1Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309, USA

2Department of Mathematics and Statistics, San Diego State University, San Diego, CA 92182, USA

Traveling unidirectional localized edge states in optical honeycomb lattices are analytically con-
structed. They are found in honeycomb arrays of helical waveguides designed to induce a periodic
pseudo-magnetic field varying in the direction of propagation. Conditions on whether a given pseudo-
field supports a traveling edge mode are discussed; a special case of the pseudo-fields studied agrees
with recent experiments. Interesting classes of dispersion relations are obtained. Envelopes of non-
linear edge modes are described by the classical one-dimensional nonlinear Schrödinger equation
along the edge. Novel nonlinear states termed edge solitons are predicted analytically and found
numerically.

I. INTRODUCTION

Substantial attention has been paid to the understand-
ing of edge modes in both condensed matter physics and
optics. Interest in such modes goes back to the first stud-
ies of the Quantum Hall Effect (QHE) where it was found
that the edge current was quantized [1–3]. There has
also been interesting research on the connection of the
existence of edge states to the geometry of eigenspaces
of Schrödinger operators [4–9]. Recently, theoretical re-
sults gave support to the possible existence of unidirec-
tional modes in optical honeycomb lattices [10, 11]. Due
to the extra symmetry of the honeycomb lattice, Dirac
points, or conical intersections between dispersion bands,
exist. The unidirectional modes in [10, 11] emerged due
to symmetry breaking perturbations which separated the
Dirac points and induced a nontrivial integer “topologi-
cal” charge on the separated bands.
The first experimental realization of unidirectional

electromagnetic edge modes was in [12]. These results
relied on magnetic field effects, and were carried out in
the microwave regime. Further, the modes were found on
a square lattice which have no associated Dirac points.
However, in recent work, it was experimentally shown
in [13] that by introducing a symmetry breaking pseudo-
magnetic field into a honeycomb optical lattice, the Dirac
points separate and unidirectional edge wave propaga-
tion at optical frequencies occurs. These edge waves are
shown to be effectively immune to backscattering from
obstacles and so represent a new degree of control of light.
Such psuedo-magnetic fields are generated by a peri-

odic change in the index of refraction of the waveguides
in the direction of propagation. Considering the direction
of the wave propagation as “time”, the variation in the
index of refraction has a well defined helicity and thus
breaks “time”-reversal symmetry [13]. To model this ef-
fect in a honeycomb optical lattice, we begin with the
lattice nonlinear Schrödinger (NLS) equation [13] with
cubic Kerr contribution

i∂zψ = − 1

2k0
∇2ψ +

k0∆n

n0
ψ − γ |ψ|2 ψ. (1)

Here k0 is the input wavenumber, n0 is the ambient re-
fractive index, ∆n/n0 is the linear index change relative

to n0, also referred to as the potential, and γ represents
the nonlinear index contribution. The complex scalar
field ψ is the envelope of the electric field, z is the direc-
tion of propagation and takes on the role of “time”, (x, y)
is the transverse plane, and ∇ ≡ (∂x, ∂y). In [13], the po-
tential ∆n is taken to be a 2D lattice potential defined
on the (x, y)-plane moving along a prescribed path in the
z-direction. This motion is characterized by a path func-
tion a(z) = (a1(z), a2(z)), such that after the coordinate
transformation

x′ = x− a1(z), y
′ = y − a2(z), z

′ = z,

the transformed potential ∆n = ∆n(x′, y′) is indepen-
dent of z′.
Experimentally, the path represented by a(z) can be

written into the optical material (e.g. fused silica) via the
femtosecond laser writing technique [24], which was the
method used in [13]. Since this technique enables waveg-
uides to be written along general paths, we only require
a(z) to be a smooth function. Introducing a transformed
field

ψ = ψ̃ exp

[

i

2k0

∫ z

0

|A(ξ)|2dξ
]

,

whereA is induced by the path function a via the formula

A(z) = −k0a′(z), (2)

we transform Eq. (1) to

i∂z′ ψ̃ = − 1

2k0
(∇′ + iA(z′))2ψ̃+

k0∆n

n0
ψ̃− γ

∣

∣

∣
ψ̃
∣

∣

∣

2

ψ̃. (3)

In these coordinates, A appears in the same way as if we
had added a magnetic field to Eq. (1), and so we call A
a pseudo-magnetic field. Taking l to be the lattice scale
size, we employ the dimensionless coordinates x′ = lx,
y′ = ly, z′ = 2k0l

2z. We introduce the scaled field ψ̃ =√
P∗ψ, where P∗ is input peak power, and by rescaling

A accordingly, and defining V (r) = 2k20l
2∆n/n0 where

r ≡ (x, y), we get the normalized lattice NLS equation

i∂zψ = −(∇+ iA(z))2ψ + V (r)ψ − σ0 |ψ|2 ψ. (4)
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The dimensionless coefficient σ0 = 2γk0l
2P∗ is the

strength of the nonlinear change in the index of refrac-
tion. We also note that for convenience, the dimension-
less variables x, y, z, ψ are used; these dimensionless vari-
ables should not be confused with the dimensional vari-
ables in Eq. (1). In this paper we take the potential V (r)
to be of honeycomb (HC) type.
It is interesting to note that in condensed matter

physics Eq. (4) with σ0 = 0 describes Bloch electrons in
a homogeneous electric field [15], where the electric field
is proportional to the time derivative of the vector poten-
tial A. Thus, although the parameter regime addressed
in this paper is chosen to be consistent with experiments
done on optical graphene in [13], the basic asymptotic
theory described in this paper applies to different and
important physical phenomena.
In [13], in terms of normalized coordinates, the partic-

ular helical pseudo-magnetic field

A(z) = (A1(z), A2(z)) = κ(sinΩz,− cosΩz) (5)

where κ and Ω are constant, was studied numerically
and experimentally. Numerically calculated dispersion
relations of the associated discrete wave problem, ob-
tained after employing the tight-binding approximation,
are given which indicate the existence of unidirectional
edge modes. Motivated by the work in [13] and [14],
we analytically investigate the existence of unidirectional
traveling edge modes. This is done for general periodic
pseudo-fields A(z) which includes Eq. (5) as a subcase.
By allowing the pseudo-field to evolve relatively rapidly,
which is consistent with the experiments in [13], and by
using Floquet theory (cf. [17, 18]), an asymptotic theory
is developed which leads to explicit formulae describing
how the dispersion relation depends on a given pseudo-
field A(z). Therefore, we can theoretically predict for
general pseudo-fields when unidirectional modes exist.
To exemplify the different dispersion relations allowed

by our analysis, we generalize the helical motion in
Eq. (5) to include one additional trigonometric term

A1(z) = κ sinΩz + λ sin (DΩz + φ),

A2(z) = −κ cosΩz + λ cos (DΩz + φ),

where D is taken to be 1 or 2, λ is constant, and we
take φ = π/4. The values of κ, λ, and φ are related to
the amplitude of the first harmonic, additional harmonic,
and phase offset of the additional harmonic respectively.
Since A(z) is given by Eq. (2), in principle, for every a(z)
written into the the optical lattice, each of the terms κ,
λ, and φ can be controlled via the laser-writing proce-
dure. Within this extended family of pseudo-fields, we
analytically find dispersion relations of the same form
that were found in [13] as well as novel classes of dis-
persion relations. In terms of wave propagation, we find
that in addition to nearly unidirectional wave propaga-
tion, there are cases with significant dispersion. Thus,
not every symmetry-breaking pseudo-field generates co-
herent unidirectional modes.

We are also able to analyze the effect of nonlinear-
ity on these traveling edge modes. The classical one-
dimensional nonlinear Schrödinger equation governing
the envelope of the edge modes is derived below and is
found to be an effective description of nonlinear travel-
ing edge modes. Using this equation, we find analyti-
cally, and confirm numerically, that the unidirectionality
of waves is maintained in the in the case of soliton prop-
agation. In the focusing NLS evolution, the nonlinearity
balances dispersion to produce nonlinear edge solitons.
Depending on the choice of parameters, some of the

nonlinear modes appear to be immune to backscattering,
and they are in the topologically protected regime pre-
dicted by linear theory cf. [13]. This indicates that uni-
directional nonlinear edge modes should be observable.
These results hint, for the first time, at a new means
for the control of light conferred by merging nonlinear
and symmetry-breaking effects. See also [19], where bulk
nonlinear modes have been found. Further, such “topo-
logically protected nonlinear states” can apply to other
systems; e.g. recently introduced one dimensional domain
walls [25].

II. PRELIMINARIES

To begin the analysis, the substitution ψ = e−ir·A(z)φ
in Eq. (4) gives

i∂zφ = −∆φ− r ·Azφ+ V (r)φ − σ0|φ2|φ. (6)

The tight binding approximation for large V assumes a
Bloch wave envelope of the form [21]

φ ∼
∑

v

(av(z)φ1,v + bv(z)φ2,v) e
ik·v (7)

where φ1,v = φ1(r−v), φ2,v = φ2(r−v) are the linearly
independent orbitals associated with the two sites A and
B where the honeycomb potential V (r) has minima in
each fundamental cell, and k is a vector in the Brillouin
zone. Each v = mv1 + nv2, where the period vectors v1

and v2 are given by

v1 =
(√

3/2, 1/2
)

, v2 =
(√

3/2, − 1/2
)

.

Fig. 1 shows the semi-infinite honeycomb lattice with zig-
zag boundary conditions studied in this paper. The in-
dexing scheme for the A and B sites follows [20]. For
each site {A,B}m,n, the subscripts m and n denote re-
spectively the infinite and semi-infinite directions. The
zig-zag boundary conditions require n ≥ 0 for Bm,n and
n ≥ 1 for Am,n, while m ∈ Z for both. The honeycomb
lattice is formed by those sites with m + n even, but to
facilitate the computation we carry out the analysis for
the entire semi-infinite lattice in the (m,n)-plane. In ad-
dition to the primitive lattice vectors v1 and v2, Fig. 1
also shows the vectorial distance d between two adjacent
sites Am,n and Bm,n. It can be seen that d = (1/

√
3, 0)
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FIG. 1: The semi-infinite honeycomb lattice with
zig-zag boundary conditions. The A and B sites are

indexed following [20]. The primitive lattice vectors v1

and v2, and the inter-site distance d are also labeled.

for a perfect honeycomb lattice. Substituting the tight
binding approximation (7) into Eq. (6), carrying out the
requisite calculations (see [21] for more details), and af-
ter dropping small terms and renormalizing, we arrive at
the following 2D discrete system

i∂zamn + eid·A(L−(z)b)mn + σ|amn|2amn = 0, (8)

i∂zbmn + e−id·A(L+(z)a)mn + σ|bmn|2bmn = 0, (9)

where

(L−b)mn =bmn + ρ(bm−1,n−1e
−iθ1 + bm+1,n−1e

−iθ2),

(L+a)mn =amn + ρ(am+1,n+1e
iθ1 + am−1,n+1e

iθ2),

ρ is a lattice deformation parameter, θ1(z) = v1 · (k +
A(z)), θ2(z) = v2 · (k+A(z)), and σ is a constant which
depends on σ0 and the underlying orbitals. Taking a dis-
crete Fourier transform in m, i.e. letting amn = ane

imω

and bmn = bne
imω, yields the simplified system

i∂zan + eid·A (bn + ργ∗(z;ω)bn−1) + σ|an|2an = 0,
(10)

i∂zbn + e−id·A (an + ργ(z;ω)an+1) + σ|bn|2bn = 0,
(11)

where γ(z;ω) = 2eiϕ+(z) cos(ϕ−(z)− ω), with

ϕ+(z) = (θ2(z) + θ1(z))/2, ϕ−(z) = (θ2(z)− θ1(z))/2.

III. LINEAR THEORY

In this section we omit the nonlinear terms by set-
ting σ = 0; the nonlinear case is discussed in Section V.
The theory we develop is based upon the normalized fre-
quency of the pseudo field being large, which is consistent
with the experimental parameters used in [13]. This leads
to an analytical formulation in which we can express the
linear dispersion relation explicitly in terms of integrals
which are readily computed. The details of the asymp-
totic method are reserved for Appendix A; here we only
give the main formulae.

Since we assume that the pseudo magnetic field varies
rapidly, we express it as A = A(ζ) where ζ = ǫ−1z, |ǫ| ≪
1. Employing the method of multiple-scales [23], we write
the vectors a and b as functions of the fast and slow
scales, ζ, z, and expand so that the nth components of
each vector are given by

an = an(z, ζ) = a(0)n +O(ǫ), bn = bn(z, ζ) = b(0)n +O(ǫ).

We apply zig-zag boundary conditions, which implies
an = 0, n ≤ 0. The asymptotic method in the Appendix
shows that at leading order we have a mode which is
nearly stationary; it is given by

a(0)n = 0, b(0)n = C(Z)bSn , b
S
n =

(

−ϑ̄/ ¯̺
)n
,

where

̺(ζ) = eid·A, ϑ(ζ;ω) = ϑc(ζ) cosω + ϑs(ζ) sinω,

ϑc(ζ) = ̺(ζ) · 2ρe−iϕ+ cosϕ−,

ϑs(ζ) = ̺(ζ) · 2ρe−iϕ+ sinϕ−,

and the average f̄ means

f̄ ≡ T−1

∫ T

0

f(ζ)dζ,

where T is the period of A.
The asymptotic method further yields

C(Z) = C(0) exp (−iα̃(ω)Z) , (12)

where the dispersion relation α̃ is real and given explicitly
as a function of the pseudo-magnetic field A(ζ) by

α̃(ω) = − i

T

∫ T

0

∫ ζ

0

Q(ζ
′

;ω)Q∗(ζ;ω)dζ
′

dζ, (13)

with

Q(ζ;ω) = −̺(ζ) ϑ̄
¯̺
+ ϑ(ζ;ω). (14)

To have localized modes, we need |ϑ̄/ ¯̺| < 1, namely

P (ω) ≡ |ϑ̄/ ¯̺|2 = P0 + Pc cos 2ω + Ps sin 2ω < 1, (15)

where

P0 =
1

2

|ϑ̄c|2 + |ϑ̄s|2
| ¯̺|2 ,

Pc =
1

2

|ϑ̄c|2 − |ϑ̄s|2
| ¯̺|2 ,

Ps =
1

2

ϑ̄cϑ̄
∗
s + ϑ̄∗c ϑ̄s
| ¯̺|2 .

The interval of localization I, a subset of the circle S1 =
R/(πZ), can be determined from Eq. (15). There are
three qualitatively different scenarios

(I) :
√

P 2
c + P 2

s < 1− P0, P0 < 1,

(II) :
√

P 2
c + P 2

s > |P0 − 1|,
(III) :

√

P 2
c + P 2

s < P0 − 1, P0 > 1.



4

In case (II), there are two values of ω determined by
|ϑ̄/ ¯̺| = 1, say ω±, at which localized modes delocalize.
Thus at ω±, the edge band is emitted from the bulk spec-
trum, and so I = (ω−, ω+). In case (I), ω± drift apart
so that I = S1, while in case (III) they come together so
that I = ∅.
Letting Q(ζ;ω) = Qc(ζ) cosω + Qs(ζ) sinω, Eq. (13)

becomes

α̃(ω) = α̃0 + α̃c cos 2ω + α̃s sin 2ω, (16)

where one finds directly that the α̃0, α̃c and α̃s can be
written in terms of double integrals. It follows from
Eq. (16) that the number of times N that α̃(ω) crosses
α̃ = 0 on I can only be N = 0, 1, or 2. For N = 0 or
N = 2, it is possible for edge states to exist in pairs which
allow propagation in different directions. In this case, the
edge modes are susceptible to dispersion. When N = 1,
though, because of the unique root of α̃, we expect to
find unidirectional edge modes that exhibit essentially
no dispersion.
We note that the expressions for the localization in-

terval I and the dispersion relation α̃(ω) are invariant
under the constant translations

(ω,A(ζ)) → (ω + (v1 − v2) · Ā/2,A(ζ)− Ā),

(k,A(ζ)) → (0,A(ζ) + k),

where Ā is an arbitrary constant 2D vector. Hence with-
out loss of generality we shall consider A(ζ) with zero
mean and set k = 0 in the following.
In this paper the lattice deformation parameter ρ is

taken to be positive. As shown in Appendix B, in the
tight-binding limit ρ can be tuned to any positive value
by slightly deforming a perfect honeycomb potential.
Since both P (ω) and α̃(ω) are proportional to ρ2, as ρ is
decreased with the other parameters fixed, the localiza-
tion interval I is broadened and the group velocity α̃′(ω)
is decreased.
Now let us assume thatA possesses the three-fold sym-

metry (see Fig. 4(a-c) for examples), i.e.

A(ζ + 2π/3) = R 2π
3
A(ζ), (17)

where R 2π
3

denotes rotation by 2π/3. As shown in Ap-

pendix B, in the tight-binding limit we have the approx-
imation d = (1/

√
3, 0) independent of ρ. Using the iden-

tities d−v1 = R−1
2π
3

d and d−v2 = R 2π
3
d, we can simplify

the off-diagonal element ϑ of the matrix L− as

ϑ(ζ;ω) = ρ(e−iω̺(ζ+) + eiω̺(ζ−)), (18)

where ζ± = ζ ± 2π/3. It then follows that

ϑ̄/ ¯̺ = ρ(e−iω + eiω), (19)

so the localization interval I depends only on ρ as

I =

{

(cos−1(1/(2ρ)), π − cos−1(1/(2ρ))), ρ ≥ 1/2;
S1, ρ < 1/2.

This expression for I is identical to the one derived in
[20] in the absence of the pseudo-field A.

IV. CLASSIFICATION OF THE DISPERSION

RELATION

To make this analysis more concrete, we take the pe-
riodic pseudo-field to be

A(ζ) = κ (s (ζ) ,−c (ζ)) + λ(s(Dζ + φ), c(Dζ + φ)).

Here, s(ζ) = sin ζ, c(ζ) = cos ζ, and ζ = z/ǫ. Unless
otherwise stated, we set ǫ = 1.5/(2π), which is motivated
by experiments [13]. This pseudo-field is characterized by
three continuous parameters κ, λ, and φ, and a discrete
parameter D ∈ Z. It can be seen that A(ζ) has a (D +
1)-fold symmetry; in particular, A(ζ) has the three-fold
symmetry given by Eq. (17) when D = 3n − 1, n ∈ Z.
In the following we fix φ = π/4 and explore D = 2 and
D = 1.
Fig. 2 shows the (κ, λ)-plane, hereafter referred to as

the phase diagram, partitioned based on our asymp-
totic theory according to all possible combinations of
cases (I,II,III) and N = 0, 1, 2, hereafter denoted by
(case, N). All six combinations have been found. Fig. 3
shows the full dispersion relations, or Floquet parame-
ters, α(ω) = ǫα̃(ω) at representative points (a)-(f) on the
(κ, λ)-plane in Fig. 2 computed directly using Eqs. (10–
11). The numerical computations are performed using a
finite number of lattice sites with zig-zag boundary con-
ditions on both ends. Unless otherwise stated, each vec-
tor a and b is defined over 20 lattice sites to allow for
sufficient decay. The dark black curves in Fig. 3 show
Eq. (16). It can be seen that the asymptotic theory de-
scribes the dispersion relation of edge modes almost ex-
actly in all cases studied. Fig. 4 shows the pseudo-field
A with the parameters used in Fig. 3.
The phase diagrams in Fig. 2(i)-(iv) are computed us-

ing a three-fold symmetric pseudo-field (D = 2). Thus at
ρ = 1 (Fig. 2(i)), we have case (II) with the localization
interval I = (π/3, 2π/3). In this case the phase diagram
is partitioned intoN = 1 andN = 0 regions. In Fig. 3(a),
using a pseudo-field with a single harmonic (Fig. 4(a))
as in [13], we obtain an N = 1 dispersion curve with a
non-zero slope. This indicates that the linear edge mode
propagates as in [13]. In Fig. 3(b), using a pseudo-field
with a nonzero second harmonic (Fig. 4(b)), we obtain
anN = 0 dispersion curve that does not connect between
the upper and lower bulk dispersion branches.
At ρ = 0.4 < 1/2 (Fig. 2(ii)), we have case (I) with

I = S1. In this case the phase diagram is partitioned
into N = 2 and N = 0 regions. Interestingly, these
regions appear to respectively coincide with the N = 1
and N = 0 regions in the ρ = 1 case. In Fig. 3(c) and
Fig. 3(d), using the same pseudo-fields as in Fig. 3(a)
and Fig. 3(b) respectively, we observe that a pseudo-field
with a single harmonic givesN = 2, but a nonzero second
harmonic results in N = 0.
At 1/2 < ρ = 0.6 < 1 (Fig. 2(iii)), we have case (II)

with a broader I than ρ = 1. Compared to ρ = 1, the
N = 0 region remains the same but a neighborhood of the
boundary of the N = 1 region has turned into an N = 2
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FIG. 2: (Color Online) The (κ, λ)-plane partitioned
according to the combinations of cases (I,II,III) and
N = 0, 1, 2, represented as (case, N) pairs, with

parameters (ρ,D): (i) (1, 2); (ii) (0.4, 2); (iii) (0.6, 2);
(iv) (2, 2); (v) (1, 1). The full dispersion relations at the

labeled points (a)-(f) are shown in Fig. 3.

region. A typical N = 2 dispersion relation computed
using the pseudo-field in Fig. 4(c) is shown in Fig. 3(e).
Note that in this case, the predicted zero crossing on the
right, say ωr (shown in the inset), is quite close to the
predicted value of ω+. This implies that P (ωr) is close
to 1 and α̃(ω+) is close to 0. This is a sensitive case,
so the number of lattice sites is increased to 80 and ǫ is
decreased to 0.3/(2π). The numerical result is then in
good agreement with the asymptotic prediction.

At ρ = 2 > 1 (Fig. 2(iv)), we have case (II) with a
narrower I than ρ = 1. Compared to ρ = 1, the N =
0 region has expanded and correspondingly the N = 1
region has shrunk.

In the absence of the three-fold symmetry, I should
depend not only on ρ, but also the pseudo-field itself.
Fig. 2(v) shows a phase diagram computed using a two-
fold symmetric (or elliptic) pseudo-field (D = 1). Indeed
at ρ = 1, we have coexistence between cases (I), (II) and
(III). Interestingly, we find only N = 2 in the case (I)
region and N = 1 in the case (II) region. A typical case
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9

A
2

A
1−6 6

−6

6

A
2

A
1−5 5

−5

5

(a) (b) (c) (d)

FIG. 4: Plots of the pseudo-field A(ζ) = (A1(ζ), A2(ζ))
corresponding to the parameters used in (a) Fig. 3(a,c);

(b) Fig. 3(b,d); (c) Fig. 3(e); (d) Fig. 3(f).

(III) dispersion relation computed using the pseudo-field
in Fig. 4(d) is shown in Fig. 3(f).

We note that the difference between the N = 1 and
N = 0, 2 cases is distinguished by introducing a Z2 topo-
logical index, see [22], I ≡ N(mod 2), such that the for-
mer (latter) situation corresponds to I = 1 (I = 0),
namely nontrivial (trivial) topology. We will explore this
connection further in the future.
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V. NONLINEAR TWO-DIMENSIONAL

LOCALIZED EDGE MODES

Following the approach in [20] and to compare with
experiments in [13], we construct two-dimensional (2D)
localized solutions by introducing an envelope in ω and
taking the inverse Fourier transform in m. First we focus
on fixed ω and modify our preceding analysis in Sec. III
to account for weak nonlinearity where σ = ǫσ̃. The
analysis proceeds as before except that r+ is replaced by
r+− σ̃|b(0)|2b(0) in Eq. (A1). In this case we arrive at the
following equation

i∂ZC = α̃(ω)C − σ̃αnl(ω)|C|2C, (20)

where αnl(ω) = ‖bS‖44/‖bS‖22 with

∣

∣

∣

∣bS
∣

∣

∣

∣

2

2
=

∞
∑

n=0

∣

∣bSn
∣

∣

2
,

∣

∣

∣

∣bS
∣

∣

∣

∣

4

4
=

∞
∑

n=0

∣

∣bSn
∣

∣

4
.

We can reconstruct the approximation to bmn via

bmn = C(Z, ω)eiωmbSn . (21)

In the narrow band approximation with ω near any
given ω0 ∈ I, the solution C represents an envelope func-
tion with carrier wavenumber ω0. To describe its dynam-
ics, we first expand α̃(ω) and αnl(ω) around ω0. We then
replace ω − ω0 by −iν∂y, where ν is the width around
ω0, or the inverse width of the envelope in physical space.
Finally, we rewrite Eq. (20) as the following equation for
the envelope C

i∂ZC =





3
∑

j=0

α̃(j)(ω0)

j!
(−iν∂y)j +O(ν4)



C

− σ̃ [αnl(ω0) +O(ν)] |C|2C, (22)

where α̃(j)(ω0) denotes the j-th derivative of α̃(ω) at ω =
ω0. Equation (22) is a higher order nonlinear Schrödinger
(NLS) equation.
There are interesting subcases. If α̃′′(ω0) 6= 0, then the

equation is reduced at leading order to the well-known
NLS equation given below

i∂Z̃C̃ +
α̃′′(ω0)

2
C̃Y Y + σeff |C̃|2C̃ = 0, (23)

where C = C̃(Y, Z̃)e−iα̃(ω0)Z , Y = y − να̃′(ω0)Z, Z̃ =
ν2Z, and σeff = σ̃αnl(ω0)/ν

2. On the other hand if
α̃′′(ω0) = 0 then the following “zero dispersion” NLS
equation is obtained

i∂Z3
C̃ − i

α̃′′′(ω0)

6
C̃Y Y Y + σzeff |C̃|2C̃ = 0, (24)

where now C = C̃(Y, Z3)e
−iα̃(ω0)Z , Y = y − να̃′(ω0)Z,

Z3 = ν3Z, and σzeff = σ̃αnl(ω0)/ν
3.

As indicated above, Eq. (23) is the classical 1D NLS
equation. The equation is maximally balanced when

σeff = O(1). In the focusing case, α̃′′(ω0)σeff > 0,
the NLS equation is known to contain solitons. Thus
in this case the semi-infinite HC lattice truly contains
edge solitons. In the defocusing case, α̃′′(ω0)σeff < 0,
the nonlinearity enhances dispersion, and so no soliton
is expected. For the zero-dispersion NLS equation (24),
which applies when α̃′′(ω0) = 0 and σzeff = O(1), the
nonlinearity also enhances dispersion somewhat.
To test these predictions, we solve the 2D discrete sys-

tem Eqs. (8–9) numerically using the initial condition

amn = 0, bmn =

∫

I
b̂(ω)

bSn(ω)
√

〈bS(ω), bS(ω)〉
eimωdω,

(25)
where

b̂(ω) =
e−(ω−ω0)

2/ν2

∫

I e
−(ω−ω0)2/ν2dω

,

and compare the results with bmn reconstructed from nu-
merical solutions of the 1D NLS equation (22) with the
initial condition

C(Z = 0, y) =

∫

I
b̂(ω)

1
√

〈bS(ω), bS(ω)〉
eiy(ω−ω0)/νdω.

(26)
In Fig. 5, we compare linear (σ = 0) edge modes found
from the full 2D discrete system to those found from the
1D linear Schrödinger (LS) equation, i.e. Eq. (22) with
σ̃ = 0. The comparison of results is shown in terms of
|bm0(z)|. The left panels (a,c,e) show the solutions of
the 2D discrete system and the right panels (b,d,f) show
the solutions of the 1D LS equation where we use the
following modification of Eq. (21),

bmn = C(Z, y)eiω0y/νbSn, (27)

to reconstruct bmn with C satisfying the LS equation.
In Fig. 6, we compare nonlinear (σ 6= 0) edge modes

found from the full 2D discrete system to those found
from the full 1D NLS equation (22). As before, the com-
parison of results is shown in terms of |bm0(z)|, the left
panels (a,c,e) show the solutions of the 2D discrete sys-
tem and the right panels (b,d,f) show the solutions of
the 1D NLS equation with Eq. (27) used to reconstruct
|bm0(z)|.
In the absence of nonlinearity (σ = 0), the fastest

and most robust unidirectional traveling mode is seen
in Fig. 5(a), which corresponds to the N = 1 dispersion
curve in Fig. 3(a) with α̃′(ω0) 6= 0 [13]. In this case,
relatively weak dispersion results from α̃′′(ω0) = 0 and
the term α̃′′′(ω0) 6= 0 is a small higher order contribu-
tion. Figs. 5(c) and 5(e) both correspond to the N = 2
dispersion curve in Fig. 3(c) with α̃′(ω0) = 0. In both
cases, the linear dispersion resulting from α̃′′(ω0) 6= 0
essentially eliminates the mode after sufficient evolution.
Fig. 6(a) shows the nonlinear evolution using the same

parameters as Fig. 5(a) but with σ = 0.005 ∼ ǫν3. Com-
paring these two panels, we see that the unidirectional
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FIG. 5: (Color Online) Plot of |bm0(z)| (at the edge) for
parameters (ρ, ν, ω0): (a,b) (1, 0.2, π/2); (c,d)

(0.4, 0.2, π/4); (e,f) (0.4, 0.2, 3π/4). The pseudo-field
parameters are fixed at (D,κ, λ) = (2, 1.4, 0), and the
edge modes are linear (σ = 0). Periodic boundary

conditions in m are used. The left panels are calculated
from the 2D discrete system Eqs. (8–9); the right panels

are found from the 1D LS equation (22).

traveling mode is largely maintained in the presence of
weak nonlinearity, though dispersion is somewhat en-
hanced in the nonlinear case. Figs. 6(c) and 6(e) show
the nonlinear evolutions using the same parameters as
in Figs. 5(c) and 5(e) but with σ = 0.02 ∼ ǫν2. For
Fig. 6(c), which is described by the defocusing NLS equa-
tion, which has no solitons due to α̃′′(ω0) < 0, we see
that weak nonlinearity enhances dispersion. On the other
hand, for Fig. 6(e), which is described by the focusing
NLS equation, which has solitons due to α̃′′(ω0) > 0, we
see that weak nonlinearity enhances localization.

Comparing panels (b,d,f) with panels (a,c,e) in Figs. 5
and 6, we see that the 1D LS/NLS equation (22) repro-
duces the time evolution of the 2D discrete system (8–9)
well up to z ∼ 1/(ǫν3) for panel (a) and z ∼ 1/(ǫν2)
for panels (c,e). Beyond these time scales, higher-order
terms must be added to Eq. (22) in order to explain for
example the slow rightward drift of the wave envelope in
Fig. 6(e).

Since solitons in the 1D focusing NLS equation are
known to be stable, it is interesting to see how the edge
solitons found above in the 2D discrete system propagate
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FIG. 6: (Color Online) Plot of |bm0(z)| (at the edge) for
the same parameters as Fig. 5 except that (a,b)
σ = 0.005; (c,d,e,f) σ = 0.02. The left panels are

calculated from the 2D discrete system Eqs. (8–9); the
right panels are found from the full 1D NLS equation

(22) with σ̃ 6= 0.

over long distances. Fig. 7 shows two time evolutions
computed using the same parameters as in Fig. 6(e) ex-
cept that ω0 = 5π/8, and ρ = 0.6 for panel (a) and
ρ = 0.4 for panel (b). Since α̃(ω) ∝ ρ2, it can be seen
from Fig. 3(c) that locally α̃′(ω0) 6= 0 and α̃′′(ω0) > 0
in both cases, and so the governing 1D NLS equation
is focusing. The difference between these two choices of
ρ is that globally the dispersion relation α̃(ω) is topo-
logically nontrivial (case (II), N = 1) for ρ > 1/2 and
topologically trivial (case (I), N = 2) for ρ < 1/2.
Over the distance z ∼ 1/(ǫν2), the localized wave enve-
lope indeed evolves into a traveling edge soliton in both
cases as predicted by the NLS equation. However, for
larger z, the edge soliton travels at a uniform velocity in
Fig. 7(a), but gradually slows down due to backscattering
in Fig. 7(b). This dramatic difference may be attributed
to the fact that the linear topologically protected trav-
eling edge waves, which are immune to backscattering,
confer this immunity to nonlinear modes, such as the
one in Fig. 7(a).

This immunity of traveling edge waves to backscatter-
ing in the topologically protected regime is usually ex-
plained in terms of the absence of counter-propagating
edge modes. For this reason, these edge waves are also
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FIG. 7: (Color Online) Plot of |bm0(z)| (at the edge) for
the same parameters as Fig. 6(e) except that
ω0 = 5π/8, and (a) ρ = 0.6; (b) ρ = 0.4.

expected to be immune to backscattering, and so main-
tain their topological protection, in the presence of var-
ious types of disorder, at least for a degree of disorder
below a certain threshold [7]. A detailed investigation
of the dynamical behavior of traveling edge waves, using
various types of disordered honeycomb lattices cf. [16] is
a topic of interest but is outside the scope of the present
study.

VI. CONCLUSION

In this paper, a method is developed which describes
the propagation of edge modes in a semi-infinite honey-
comb lattice in the presence of a periodically and rel-
atively fast varying pseudo-field and weak nonlinearity.
In the linear case, various pseudo-fields are explored, and
different dispersion relations are found to occur, some of
which exhibit unidirectional wave propagation. A spe-
cial case agrees with the results and experiments of [13].
With weak nonlinearity included, it is shown that in the
narrow band approximation, a higher order NLS equation
is obtained. Special cases include the classical NLS and
zero dispersion NLS equations. The classical NLS equa-
tion admits solitons, and they are found to be part of
the long time nonlinear evolution under suitable circum-
stances. This shows the existence of true edge solitons.
Finally, over very long distances, with certain choices of
parameters, consistent with the notion of topological pro-
tection as indicated by the linear dispersion relation, lo-
calized nonlinear edge modes are found to be immune
from backscattering, while with other choices of param-
eters, backscattering is observed.
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Appendix A: Asymptotic analysis

With the method of multiple-scales, we write the nth

components of the vectors a and b as

an = an(z, ζ), bn = bn(z, ζ).

The coupled system given by Eqs. (10–11) then becomes

iǫ−1∂ζa+ i∂za+ L−(ζ;ω)b = 0,

iǫ−1∂ζb+ i∂zb+ L+(ζ;ω)a = 0,

where the nth component of L−(ζ;ω)b is
(

L−(ζ;ω)b
)

n
= ̺(ζ)bn + ϑ(ζ;ω)bn−1,

the operator L+ is the hermitian conjugate of L−, and

̺(ζ) = eid·A, ϑ(ζ;ω) = ϑc(ζ) cosω + ϑs(ζ) sinω,

ϑc(ζ) = ̺(ζ) · 2ρe−iϕ+ cosϕ−,

ϑs(ζ) = ̺(ζ) · 2ρe−iϕ+ sinϕ−.

Then we expand an, bn in powers of ǫ

an = a(0)n + ǫa(1)n + · · · , bn = b(0)n + ǫb(1)n + · · · .

At O(ǫ−1), ∂ζa
(0)
n = 0 and ∂ζb

(0)
n = 0 which leads to

a
(0)
n = a

(0)
n (z) and b

(0)
n = b

(0)
n (z).

At O(1), to remove secularities, using the average f̄ ≡
T−1

∫ T

0 f(ζ)dζ, where T is the period of A, we get

i∂za
(0) + L̄−(ω)b(0) = ǫr−, i∂zb

(0) + L̄+(ω)a(0) = ǫr+,
(A1)

where

r− = −i∂za(1)−L−(ζ;ω)b(1), r+ = −i∂zb(1)−L+(ζ;ω)a(1),
(A2)

and where a(1) and b(1) are found from

i∂ζa
(1) + (L−(ζ;ω) − L̄−(ω))b(0) =0, (A3)

i∂ζb
(1) + (L+(ζ;ω)− L̄+(ω))a(0) =0. (A4)

The zig-zag boundary conditions imply an(z, ζ) = 0, n ≤
0. As ǫ → 0, we have a stationary mode on the z-scale,

so that a
(0)
n = 0 and L−(ω)b(0) = 0. Thus to maintain

asymptotic balance, for ǫ 6= 0, this mode evolves on the
Z-scale where Z = ǫz, namely

b(0) = C(Z)bS , bSn =
(

−ϑ̄/ ¯̺
)n
.

To eliminate secularities at the next order, we must have

iC−1∂ZC = 〈r+, bS〉/〈bS , bS〉 ≡ α̃, (A5)

where 〈·, ·〉 is the inner product between two vectors, and
r+ is evaluated using Eqs. (A2–A4) with a(0) = 0 and
b(0) = bS . After introducing

Q(ζ;ω) ≡
(

L−(ζ;ω)bS
)

n

bSn−1

= −̺(ζ) ϑ̄
¯̺
+ ϑ(ζ;ω), (A6)
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we see that α̃(ω) becomes

α̃(ω) = − i

T

∫ T

0

∫ ζ

0

Q(ζ
′

;ω)Q∗(ζ;ω)dζ
′

dζ. (A7)

From Eq. (A6) we see that Q̄ = 0; using this fact it is
shown in Appendix C that α̃ is strictly real. Therefore
the solution to Eq. (A5)

C(Z) = C(0) exp (−iα̃(ω)Z) (A8)

shows that the influence of the nontrivial pseudo-
magnetic field A(ζ) on the stationary edge modes is the
introduction of a non-trivial phase; as mentioned in Sec-
tion III the function α̃(ω) is identified as the dispersion
relation.

Appendix B: Relation between the deformation

parameter and the honeycomb potential

In this section, we study the dependence of the defor-
mation parameter ρ on the honeycomb potential. The
prototypical honeycomb potential used in this paper is
(cf. Eq. (2) in [21])

V (r) = V0

[ |eik0b1·r + ηeik0b2·r + ηeik0b3·r|2
(1 + 2η)2

− 1

]

,

(B1)

where b1 = (0, 1), b2 = (−
√
3
2 ,− 1

2 ), b3 = (
√
3
2 ,− 1

2 ),
V0 > 0 is the potential strength, and η measures the
relative strength of the second and third plane waves.
To form a honeycomb lattice, η > 1

2 must be satisfied;
η = 1 corresponds to perfect honeycomb.
In the Appendix to [21], the deformation parameter ρ

is expressed in terms of the shift vectors ds, s = 0, 1, 2,

from its three nearest B site to an A site. The vectors
ds are functions of η; the vector −d0 is denoted by d in
this paper. Near η = 1, the expression for ρ is, to leading
order

ρ = e
9+

√
3π

18

√
V0(η−1), (B2)

which can be solved as

η − 1 =
18

9 +
√
3π
V

−1/2
0 log ρ. (B3)

Near η = 1, the vector d becomes, to leading order

d =

(

1√
3
+

1

π
(η − 1), 0

)

. (B4)

Therefore, when V0 is large, as long as ρ is positive and
not small, d changes little as a function of ρ.

Appendix C: The reality of the dispersion relation

To show that Q̄ = 0 implies that α̃(ω) given in Eq. (13)
is real, we note that (parametric dependence of Q on ω
is omitted for notational convenience)

T [iα̃(ω) + (iα̃(ω))∗]

=

∫ T

0

∫ ζ

0

Q(ζ′)Q∗(ζ)dζ′dζ +

∫ T

0

∫ ζ

0

Q∗(ζ′)Q(ζ)dζ′dζ

=

∫ T

0

∫ ζ

0

Q(ζ′)Q∗(ζ)dζ′dζ +

∫ T

0

∫ T

ζ

Q∗(ζ)Q(ζ′)dζ′dζ

=

∫ T

0

∫ T

0

Q(ζ′)Q∗(ζ)dζ′dζ =

∣

∣

∣

∣

∣

∫ T

0

Q(ζ)dζ

∣

∣

∣

∣

∣

2

= 0.
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