1,527 research outputs found

    Theoretical study of large conformational transitions in DNA: the B↔A conformational change in water and ethanol/water

    Get PDF
    We explore here the possibility of determining theoretically the free energy change associated with large conformational transitions in DNA, like the solvent-induced B⇔A conformational change. We find that a combination of targeted molecular dynamics (tMD) and the weighted histogram analysis method (WHAM) can be used to trace this transition in both water and ethanol/water mixture. The pathway of the transition in the A→B direction mirrors the B→A pathway, and is dominated by two processes that occur somewhat independently: local changes in sugar puckering and global rearrangements (particularly twist and roll) in the structure. The B→A transition is found to be a quasi-harmonic process, which follows closely the first spontaneous deformation mode of B-DNA, showing that a physiologically-relevant deformation is in coded in the flexibility pattern of DNA

    The effect of S-substitution at the O6-guanine site on the structure and dynamics of a DNA oligomer containing a G:T mismatch

    Get PDF
    The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with Ssubstitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell death rather than repair. One suggestion is that the G:T mismatch recognition protein recognises the S-substituted mismatch (GS:T) as G:T. This leads to a cycle of futile repair ending in DNA breakage and cell death. We find that some structural features of the helix are similar for the duplex with the G:T mismatch and that with the S-substituted mismatch, but differ from the normal duplex, notably the helical twist. These differences arise from the change in the hydrogen-bonding pattern of the base pair. However a marked feature of the S-substituted G:T mismatch duplex is a very large opening. This showed considerable variability. It is suggested that this enlarged opening would lend support to an alternative model of cell death in which the mismatch protein attaches to thioguanine and activates downstream damage-response pathways. Attack on the sulphur by reactive oxygen species, also leading to cell death, would also be aided by the large, variable opening

    Marshalin, a microtubule minus-end binding protein, regulates cytoskeletal structure in the organ of Corti

    Get PDF
    Dramatic structural changes in microtubules (MT) and the assembly of complicated intercellular connections are seen during the development of the cellular matrix of the sense organ for hearing, the organ of Corti. This report examines the expression of marshalin, a minus-end binding protein, during this process of cochlear development. We discovered that marshalin is abundantly expressed in both sensory hair cells and supporting cells. In the adult, prominent marshalin expression is observed in the cuticular plates of hair cells and in the noncentrosomal MT organization centers (MTOC) of Deiters' and pillar cells. Based upon differences in marshalin expression patterns seen in the organ of Corti, we identified eight isoforms ranging from 863 to 1280 amino acids. mRNAs/proteins associated with marshalin's isoforms are detected at different times during development. These isoforms carry various protein-protein interacting domains, including coiled-coil (CC), calponin homology (CH), proline-rich (PR), and MT-binding domains, referred to as CKK. We, therefore, examined membranous organelles and structural changes in the cytoskeleton induced by expressing two of these marshalin isoforms in vitro. Long forms containing CC and PR domains induce thick, spindle-shaped bundles, whereas short isoforms lacking CC and PR induce more slender variants that develop into densely woven networks. Together, these data suggest that marshalin is closely associated with noncentrosomal MTOCs, and may be involved in MT bundle formation in supporting cells. As a scaffolding protein with multiple isoforms, marshalin is capable of modifying cytoskeletal networks, and consequently organelle positioning, through interactions with various protein partners present in different cells

    Infrared Multiple Photon Dissociation Action Spectroscopy and Theoretical Studies of Diethyl Phosphate Complexes: Effects of Protonation and Sodium Cationization on Structure

    Get PDF
    The gas-phase structures of deprotonated, protonated, and sodium-cationized complexes of diethyl phosphate (DEP) including [DEP − H]−, [DEP + H]+, [DEP + Na]+, and [DEP − H + 2Na]+ are examined via infrared multiple photon dissociation (IRMPD) action spectroscopy using tunable IR radiation generated by a free electron laser, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) with an electrospray ionization (ESI) source, and theoretical electronic structure calculations. Measured IRMPD spectra are compared to linear IR spectra calculated at the B3LYP/6-31G(d,p) level of theory to identify the structures accessed in the experimental studies. For comparison, theoretical studies of neutral complexes are also performed. These experiments and calculations suggest that specific geometric changes occur upon the binding of protons and/or sodium cations, including changes correlating to nucleic acid backbone geometry, specifically P–O bond lengths and ∠OPO bond angles. Information from these observations may be used to gain insight into the structures of more complex systems, such as nucleotides and solvated nucleic acids

    The Role of Methylation in the Intrinsic Dynamics of B- and Z-DNA

    Get PDF
    Methylation of cytosine at the 5-carbon position (5mC) is observed in both prokaryotes and eukaryotes. In humans, DNA methylation at CpG sites plays an important role in gene regulation and has been implicated in development, gene silencing, and cancer. In addition, the CpG dinucleotide is a known hot spot for pathologic mutations genome-wide. CpG tracts may adopt left-handed Z-DNA conformations, which have also been implicated in gene regulation and genomic instability. Methylation facilitates this B-Z transition but the underlying mechanism remains unclear. Herein, four structural models of the dinucleotide d(GC)5 repeat sequence in B-, methylated B-, Z-, and methylated Z-DNA forms were constructed and an aggregate 100 nanoseconds of molecular dynamics simulations in explicit solvent under physiological conditions was performed for each model. Both unmethylated and methylated B-DNA were found to be more flexible than Z-DNA. However, methylation significantly destabilized the BII, relative to the BI, state through the Gp5mC steps. In addition, methylation decreased the free energy difference between B- and Z-DNA. Comparisons of α/γ backbone torsional angles showed that torsional states changed marginally upon methylation for B-DNA, and Z-DNA. Methylation-induced conformational changes and lower energy differences may contribute to the transition to Z-DNA by methylated, over unmethylated, B-DNA and may be a contributing factor to biological function

    Functional Rotation of the Transporter AcrB: Insights into Drug Extrusion from Simulations

    Get PDF
    The tripartite complex AcrAB-TolC is the major efflux system in Escherichia coli. It extrudes a wide spectrum of noxious compounds out of the bacterium, including many antibiotics. Its active part, the homotrimeric transporter AcrB, is responsible for the selective binding of substrates and energy transduction. Based on available crystal structures and biochemical data, the transport of substrates by AcrB has been proposed to take place via a functional rotation, in which each monomer assumes a particular conformation. However, there is no molecular-level description of the conformational changes associated with the rotation and their connection to drug extrusion. To obtain insights thereon, we have performed extensive targeted molecular dynamics simulations mimicking the functional rotation of AcrB containing doxorubicin, one of the two substrates that were co-crystallized so far. The simulations, including almost half a million atoms, have been used to test several hypotheses concerning the structure-dynamics-function relationship of this transporter. Our results indicate that, upon induction of conformational changes, the substrate detaches from the binding pocket and approaches the gate to the central funnel. Furthermore, we provide strong evidence for the proposed peristaltic transport involving a zipper-like closure of the binding pocket, responsible for the displacement of the drug. A concerted opening of the channel between the binding pocket and the gate further favors the displacement of the drug. This microscopically well-funded information allows one to identify the role of specific amino acids during the transitions and to shed light on the functioning of AcrB

    High frequency of the IVS2-2A>G DNA sequence variation in SLC26A5, encoding the cochlear motor protein prestin, precludes its involvement in hereditary hearing loss

    Get PDF
    BACKGROUND: Cochlear outer hair cells change their length in response to variations in membrane potential. This capability, called electromotility, is believed to enable the sensitivity and frequency selectivity of the mammalian cochlea. Prestin is a transmembrane protein required for electromotility. Homozygous prestin knockout mice are profoundly hearing impaired. In humans, a single nucleotide change in SLC26A5, encoding prestin, has been reported in association with hearing loss. This DNA sequence variation, IVS2-2A>G, occurs in the exon 3 splice acceptor site and is expected to abolish splicing of exon 3. METHODS: To further explore the relationship between hearing loss and the IVS2-2A>G transition, and assess allele frequency, genomic DNA from hearing impaired and control subjects was analyzed by DNA sequencing. SLC26A5 genomic DNA sequences from human, chimp, rat, mouse, zebrafish and fruit fly were aligned and compared for evolutionary conservation of the exon 3 splice acceptor site. Alternative splice acceptor sites within intron 2 of human SLC26A5 were sought using a splice site prediction program from the Berkeley Drosophila Genome Project. RESULTS: The IVS2-2A>G variant was found in a heterozygous state in 4 of 74 hearing impaired subjects of Hispanic, Caucasian or uncertain ethnicity and 4 of 150 Hispanic or Caucasian controls (p = 0.45). The IVS2-2A>G variant was not found in 106 subjects of Asian or African American descent. No homozygous subjects were identified (n = 330). Sequence alignment of SLC26A5 orthologs demonstrated that the A nucleotide at position IVS2-2 is invariant among several eukaryotic species. Sequence analysis also revealed five potential alternative splice acceptor sites in intron 2 of human SLC26A5. CONCLUSION: These data suggest that the IVS2-2A>G variant may not occur more frequently in hearing impaired subjects than in controls. The identification of five potential alternative splice acceptor sites in intron 2 of human SLC26A5 suggests a potential mechanism by which expression of prestin might be maintained in cells carrying the SLC26A5 IVS2-2A>G DNA sequence variation. Additional studies are needed to evaluate the effect of the IVS2-2A>G transition on splicing of SLC26A5 transcripts and characterize the hearing status of individuals homozygous for the IVS2-2A>G variant

    Allosteric Analysis of Glucocorticoid Receptor-DNA Interface Induced by Cyclic Py-Im Polyamide: A Molecular Dynamics Simulation Study

    Get PDF
    Background: It has been extensively developed in recent years that cell-permeable small molecules, such as polyamide, can be programmed to disrupt transcription factor-DNA interfaces and can silence aberrant gene expression. For example, cyclic pyrrole-imidazole polyamide that competes with glucocorticoid receptor (GR) for binding to glucocorticoid response elements could be expected to affect the DNA dependent binding by interfering with the protein-DNA interface. However, how such small molecules affect the transcription factor-DNA interfaces and gene regulatory pathways through DNA structure distortion is not fully understood so far. Methodology/Principal Findings: In the present work, we have constructed some models, especially the ternary model of polyamides+DNA+GR DNA-binding domain (GRDBD) dimer, and carried out molecular dynamics simulations and free energy calculations for them to address how polyamide molecules disrupt the GRDBD and DNA interface when polyamide and protein bind at the same sites on opposite grooves of DNA. Conclusions/Significance: We found that the cyclic polyamide binding in minor groove of DNA can induce a large structural perturbation of DNA, i.e. a.4 A ˚ widening of the DNA minor groove and a compression of the major groove by more than 4A ˚ as compared with the DNA molecule in the GRDBD dimer+DNA complex. Further investigations for the ternary system of polyamides+DNA+GRDBD dimer and the binary system of allosteric DNA+GRDBD dimer revealed that the compression o
    corecore