25 research outputs found

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The bradykinin B2 receptor induces multiple cellular responses leading to the proliferation of human renal carcinoma cell lines

    No full text
    Inga I Kramarenko1, Thomas A Morinelli1,2, Marlene A Bunni1,2, John R Raymond Sr3, Maria N Garnovskaya11Department of Medicine (Nephrology Division), Medical University of South Carolina, Charleston, SC, USA; 2Medical and Research Services of the Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, USA; 3Medical College of Wisconsin, Milwaukee, WI, USABackground: The vasoactive peptide bradykinin (BK) acts as a potent growth factor for normal kidney cells, but there have been few studies on the role of BK in renal cell carcinomas.Purpose: In this study, we tested the hypothesis that BK also acts as a mitogen in kidney carcinomas, and explored the effects of BK in human renal carcinoma A498 cells.Methods: The presence of mRNAs for BK B1 and BK B2 receptors in A498 cells was demonstrated by reverse transcription–polymerase chain reaction. To study BK signaling pathways, we employed fluorescent measurements of intracellular Ca2+, measured changes in extracellular pH as a reflection of Na+/H+ exchange (NHE) with a Cytosensor microphysiometer, and assessed extracellular signal-regulated kinase (ERK) activation by Western blotting.Results: Exposure to 100 nM of BK resulted in the rapid elevation of intracellular Ca2+, caused a ≥30% increase in NHE activity, and a ≥300% increase in ERK phosphorylation. All BK signals were blocked by HOE140, a BK B2 receptor antagonist, but not by a B1 receptor antagonist. Inhibitor studies suggest that BK-induced ERK activation requires phospholipase C and protein kinase C activities, and is Ca2+/calmodulin-dependent. The amiloride analog 5-(N-methyl-N-isobutyl)-amiloride (MIA) blocked short-term NHE activation and inhibited ERK phosphorylation, suggesting that NHE is critical for ERK activation by BK. BK induced an approximately 40% increase in the proliferation of A498 cells as assessed by bromodeoxyuridine uptake. This effect was blocked by the ERK inhibitor PD98059, and was dependent on NHE activity.Conclusion: We conclude that BK exerts mitogenic effects in A498 cells via the BK B2 receptor activation of growth-associated NHE and ERK.Keywords: A498 cells, G protein-coupled receptors, signal transduction, Na+/H+ exchange, extracellular signal-regulated protein kinas
    corecore