7,051 research outputs found

    Interplay of spin density wave and superconductivity with different pairing symmetry

    Full text link
    A model study for the coexistence of the spin density wave and superconductivity is presented. With reference to the recent angle resolved photo emmission experimental data in high T_c cuprates, presence of the nested pieces of bands is assumed. The single band Hubbard model, therefore, when treated within the Hatree-Fock mean field theory leads to a spin density wave (SDW) ground state. The superconductivity (SC) is assumed to be due to a generalised attractive potential with a separable form without specifying to any particular origin. It therefore allows a comparative study of the coexistence of superconductivity of different order parameter symmetry with the spin density wave state. We find that the phase diagram, comprising of the amplitudes of the respective gaps (SC and SDW) Vs. band filling resembles to that of the high T_c cuprates only when the order parameter of the superconducting phase has d-wave symmetry. Thermal variation of different order parameters (e.g, SC and SDW) also show interesting coexistence and reentrance behaviors that are consistent with experimental observations, specially for the borocarbides.Comment: 8 pages, 6 figures (postscript attached), Physica C (in press

    Synthesis, Analgesic, Anti-inflammatory and Antimicrobial Activities of Some Novel Pyrazoline Derivatives

    Get PDF
    Purpose: Microbial infections often produce pain and inflammation. Chemotherapeutic, analgesic and anti-inflammatory drugs are prescribed simultaneously in normal practice. The compound possessing all three activities is not common.The purpose of the present study was to examine whether molecular modification might result in detection of new potential antirheumatic drugs having antimicrobial activities. Method: A series of novel 4-(5′-substituted aryl-4′, 5′-dihydropyrazole-3′-yl-amino) phenols 2a-f have been synthesized by treating substituted aryl-N-chalconyl amino phenols 1a-f with hydrazine hydrate. The starting materials were synthesized from p-aminoacetophenone. Their structures were confirmed by IR, 1H NMR spectral data. The synthesized compounds were investigated for analgesic, ant-inflammatory and antimicrobial activities. Result: The data reported in Tables 2, 3 & 4 shows that effect of variation in chemical structure on activity was rather unpredictable. Seldom did a particular structural modification lead to uniform alteration in activity in all tests. The substitution which appeared to be most important for high order of activity in the greatest number of test was the p-choloroaryl group. The introduction of p-nitro and p-hydroxy group in aryl moiety of the pyrazole analogs 2c and 2e produce compounds with potent analgesic, anti-inflamatory and, in a few cases, antimicrobial properties. Conclusion: The observed increase in analgesic, anti-inflammatory and antimicrobial activities are attributed to the presence of 4-NO2, 2-OH and 4-Cl in phenyl ring at 5-position of pyrazoline ring of synthesized compounds. In some cases their activities are equal or more potent than the standard drugs. Keywords: Pyrazole, Analgesic, Anti-inflammatory, Antibacterial activity Tropical Journal of Pharmaceutical Research Vol. 7 (2) 2008: pp. 961-96

    Ruminal impaction due to Ficus esquiroliana Levl. in Boer goats

    Get PDF

    A phenomenological equation of state for isospin asymmetric nuclear matter

    Full text link
    A phenomenological momentum-independent (MID) model is constructed to describe the equation of state (EOS) for isospin asymmetric nuclear matter, especially the density dependence of the nuclear symmetry energy Esym(ρ)E_{\text{\textrm{sym}}}(\rho). This model can reasonably describe the general properties of the EOS for symmetric nuclear matter and the symmetry energy predicted by both the sophisticated isospin and momentum dependent MDI model and the Skyrme-Hartree-Fock approach. We find that there exists a nicely linear correlation between KsymK_{\mathrm{sym}} and LL as well as between J0/K0J_{0}/K_{0} and K0K_{0}, where LL and KsymK_{\mathrm{sym}} represent, respectively, the slope and curvature parameters of the symmetry energy at the normal nuclear density ρ0\rho_{0} while K0K_{0} and J0J_{0} are, respectively, the incompressibility and the third-order derivative parameter of symmetric nuclear matter at ρ0\rho_{0}. These correlations together with the empirical constraints on K0K_{0}, LL and Esym(ρ0)E_{\text{\textrm{sym}}}(\rho_{0}) lead to an estimation of -477 MeV ≀Ksat,2≀−241\leq K_{\mathrm{sat,2}}\leq -241 MeV for the second-order isospin asymmetry expansion coefficient for the incompressibility of asymmetric nuclear matter at the saturation point.Comment: 9 pages, 4 figures, contribution to Special Topic on Large-Scale Scientific Facilities (LSSF) in Science in China Series G: Physics, Mechanics & Astronom

    Ferritins: furnishing proteins with iron

    Get PDF
    Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores and examine in detail how three selected ferritins oxidise Fe2+ in order to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins
    • 

    corecore