40 research outputs found
Quasi-static imaged-based immersed boundary-finite element model of human left ventricle in diastole
SUMMARY:
Finite stress and strain analyses of the heart provide insight into the biomechanics of myocardial function and dysfunction. Herein, we describe progress toward dynamic patient-specific models of the left ventricle using an immersed boundary (IB) method with a finite element (FE) structural mechanics model. We use a structure-based hyperelastic strain-energy function to describe the passive mechanics of the ventricular myocardium, a realistic anatomical geometry reconstructed from clinical magnetic resonance images of a healthy human heart, and a rule-based fiber architecture. Numerical predictions of this IB/FE model are compared with results obtained by a commercial FE solver. We demonstrate that the IB/FE model yields results that are in good agreement with those of the conventional FE model under diastolic loading conditions, and the predictions of the LV model using either numerical method are shown to be consistent with previous computational and experimental data. These results are among the first to analyze the stress and strain predictions of IB models of ventricular mechanics, and they serve both to verify the IB/FE simulation framework and to validate the IB/FE model. Moreover, this work represents an important step toward using such models for fully dynamic fluid–structure interaction simulations of the heart
Modeling intracranial aneurysm stability and growth: An integrative mechanobiological framework for clinical cases
We present a novel patient-specific fluid-solid-growth framework to model the mechanobiological state of clinically detected intracranial aneurysms (IAs) and their evolution. The artery and IA sac are modeled as thick-walled, non-linear elastic fiber-reinforced composites. We represent the undulation distribution of collagen fibers: the adventitia of the healthy artery is modeled as a protective sheath whereas the aneurysm sac is modeled to bear load within physiological range of pressures. Initially, we assume the detected IA is stable and then consider two flow-related mechanisms to drive enlargement: (1) low wall shear stress; (2) dysfunctional endothelium which is associated with regions of high oscillatory flow. Localized collagen degradation and remodelling gives rise to formation of secondary blebs on the aneurysm dome. Restabilization of blebs is achieved by remodelling of the homeostatic collagen fiber stretch distribution. This integrative mechanobiological modelling workflow provides a step towards a personalized risk-assessment and treatment of clinically detected IAs
On analysis of partitioning models and metrics in parallel sparse matrix-vector multiplication
Graph/hypergraph partitioning models and methods have been successfully used to minimize the communication requirements among processors in several parallel computing applications. Parallel sparse matrix-vector multiplication~(SpMxV) is one of the representative applications that renders these models and methods indispensable in many scientific computing contexts. We investigate the interplay of several partitioning metrics and execution times of SpMxV implementations in three libraries: Trilinos, PETSc, and an in-house one. We design and carry out experiments with up to 512 processors and investigate the results with regression analysis. Our experiments show that the partitioning metrics, although not an exact measure of communication cost, influence the performance greatly in a distributed memory setting. The regression analyses demonstrate which metric is the most influential for the execution time of the three libraries used