
HAL Id: hal-00821523
https://hal.inria.fr/hal-00821523v3

Submitted on 14 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On analysis of partitioning models and metrics in
parallel sparse matrix-vector multiplication

Umit Catalyurek, Kamer Kaya, Bora Uçar

To cite this version:
Umit Catalyurek, Kamer Kaya, Bora Uçar. On analysis of partitioning models and metrics in par-
allel sparse matrix-vector multiplication. [Research Report] RR-8301, INRIA. 2013, pp.25. �hal-
00821523v3�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49714517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00821523v3
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
83

01
--

FR
+E

N
G

RESEARCH
REPORT
N° 8301
May 2013

Project-Team ROMA

On analysis of
partitioning models and
metrics in parallel sparse
matrix-vector
multiplication
Umit V. Çatalyürek, Kamer Kaya, Bora Uçar

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

On analysis of partitioning models and metrics
in parallel sparse matrix-vector multiplication

Umit V. Çatalyürek∗ †, Kamer Kaya∗, Bora Uçar‡

Project-Team ROMA

Research Report n° 8301 — May 2013 — 25 pages

Abstract: Graph/hypergraph partitioning models and methods have been successfully used to
minimize the communication requirements among processors in several parallel computing appli-
cations. Parallel sparse matrix-vector multiplication (SpMxV) is one of the representative applica-
tions that renders these models and methods indispensable in many scientific computing contexts.
We investigate the interplay of several partitioning metrics and execution times of SpMxV imple-
mentations in three libraries: Trilinos, PETSc, and an in-house one. We design and carry out
experiments with up to 512 processors and investigate the results with regression analysis. Our
experiments show that the partitioning metrics, although not an exact measure of communication
cost, influence the performance greatly in a distributed memory setting. The regression analyses
demonstrate which metric is the most influential for the execution time of the three libraries used.

Key-words: Parallel sparse-matrix vector multiplication, hypergraph partitioning

∗ Dept. of Biomedical Informatics, The Ohio State University (kamer, umit@bmi.osu.edu)
† Dept. of Electrical & Computer Engineering, The Ohio State University
‡ CNRS and LIP, ENS Lyon, France (bora.ucar@ens-lyon.fr)

Sur l’analyse des modèles de partitionnement et
des métriques lors de la multiplication d’une

matrice creuse avec un vecteur dense en parallèle
Résumé : Les modèles et méthodes de partitionnement de graphes/hypergraphes
ont été utilisés avec succès pour minimiser les besoins de communication entre
processeurs dans de nombreuses applications de calcul parallèle. La multiplica-
tion d’une matrice creuse avec un vecteur dense (SpMxV) est une des applica-
tions représentatives qui rendent ces modèles et méthodes indispensables dans
de nombreux contextes de calcul scientifique. Nous nous intéressons aux interac-
tions entre plusieurs métriques de partitionnement et le temps d’exécution des
implémentations de SpMxV dans les bibliothèques Trilinos, PETSc, et une bi-
bliothèque à nous. Nous effectuons des expériences avec jusqu’à 512 processeurs,
et nous étudions les résultats à l’aide d’analyse par régression. Nos expériences
montrent que les métriques de partitionnement, bien qu’elles ne fournissent pas
une mesure exacte du coût de communication, influent de façon significative
sur la performance dans un système à mémoire distribuée. Les analyses par ré-
gression montrent quelle métrique a le plus d’influence sur le temps d’exécution
pour les trois bibliothèques utilisées.

Mots-clés : Multiplication d’une matrice creuse avec un vecteur en parallèle,
partitionnement d’hypergraphes

Partitioning for Parallel Sparse Matrix-Vector Multiplication 3

1 Introduction
Repeated sparse matrix-vector (SpMxV) and sparse matrix-transpose-vector
multiplies that involve the same large, sparse matrix are the kernel operations
in various iterative algorithms involving sparse linear systems. Such iterative
algorithms include solvers for linear systems, eigenvalues, and linear programs.
Efficient parallelization of SpMxV operations is therefore very important in vir-
tually all large scale scientific computing applications. Quite a number of par-
titioning methods and models have been used to enable efficient parallelization
of SpMxV. Some of the earlier methods try to balance the computational load
of processors without paying attention to the effect of sparsity in the commu-
nication requirements. Some more recent methods use graph and hypergraph
models to minimize some aspect of the communication cost while achieving load
balance.

Hypergraph model-based partitioning methods have been proved to be very
useful in implementing different partitioning schemes. These partitioning schemes
address different communication cost metrics for the suitable variants of paral-
lel SpMxV operations. In general, the importance of the communication cost
metrics, such as the total volume of communication, the total number of mes-
sages and these two quantities on per processor basis, depends on the machine
architecture, problem size, and the underlying parallel algorithm. In this study,
we investigate the effects of the partitioning methods in order to identify the
most relevant metrics in various configurations.

Hypergraph partitioning models try to reduce the total communication vol-
ume. Optimizing this metric seems to be more tractable than optimizing the
others. However, in general, optimizing only this metric cannot always re-
duce the parallel execution time. This has been recognized by earlier models
that implicitly and/or explicitly address other communication metrics. Here we
mention two and defer the discussion of related work to Section 5.

Uçar and Aykanat [26] reduce the total number of messages by allowing con-
trolled increase in the total communication volume with respect to the standard
hypergraph models [10], while also trying to achieve balance on other commu-
nication cost metrics on per processor basis. They report practical experiments
with parallel SpMxV computations showing that the method addressing the
multiple communication cost metrics is more helpful than the original method
that addresses only the total communication volume. Bisseling and Meesen [5]
also propose methods addressing different communication cost metrics and re-
port improvements with respect to an original method. Both of these studies
demonstrate that different communication cost metrics and their interplay can
be important to achieve scalable parallel algorithms. It is therefore important to
understand the effects of different metrics (optimized by different partitioning
models) on the running time of applications under different configurations.

The contribution of this paper is two-fold. We designed and conducted
several experiments in a system with 512 processors to show the effects of par-
titioning models and metrics on SpMxV performance. As far as we know, this
is the first work which compares the existing partitioning models and met-
rics in modern architectures with modern software following message-passing
paradigm. Second, we showed that it is difficult, if not impossible, to define
the correct partitioning model and metric without analyzing the characteristics
of the input matrices and the SpMxV library being used. We experimented

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 4

with three existing libraries, PETSc [1, 2], Trilinos [18], and an in-house library
SpMV [27]. In order to overcome the mentioned difficulty, we carefully analyze
the results using regression analysis techniques and relate the execution time of
SpMxV implementations to the different partitioning metrics. We portray this
analysis in detail so as to suggest improved objective functions for partitioning
software. Our experiments show that partitioning with the correct metric and
model is important for good performance especially when the number of proces-
sors is large. Although, we only had an access to a 512-processor machine, the
experiments and their analysis show that to scale larger systems, one needs to
be more careful while partitioning the matrix—in our experiments the fact that
the communication metrics greatly related to the execution time is observable
starting from 64 processors.

The rest of the paper is organized as follows. In Section 2, we describe
SpMxV in detail with three parallel algorithms using different approaches. Sec-
tion 3 defines the partitioning models and metrics investigated in this work.
Experimental results are given in Section 4 and some related work is mentioned
in Section 5. Section 6 concludes the paper.

2 Parallel sparse matrix vector multiplication
Consider the sparse matrix-vector multiply of the form y ← Ax, where the
nonzeros of the m×n matrix A are partitioned arbitrarily among K processors
such that each processor Pk owns a mutually disjoint subset of nonzeros, A(k)

whereA =
∑

k A
(k). The vectors y and x are also partitioned among processors,

where the processor Pk holds x(k), a dense vector of size nk, and it is responsible
for computing y(k), a dense vector of size mk. Let µ(·) denote the nonzero-to-
processor and vector-entry-to-processor assignments. We note that the vectors
x(k) for k = 1, . . . ,K are disjoint and hence

∑
k nk = n; similarly the vectors

y(k) for k = 1, . . . ,K are disjoint and hence
∑

kmk = m. In this setting, the
sparse matrix A(k) owned by processor Pk can be permuted and written as

A(k) =



A
(k)
11 · · · A

(k)
1` · · · A

(k)
1K

...
. . .

...
. . .

...
A

(k)
`1 · · · A

(k)
`` · · · A

(k)
`K

...
. . .

...
. . .

...
A

(k)
K1 · · · A

(k)
K` · · · A

(k)
KK


. (1)

Here, the blocks in the row-block stripe A
(k)
k∗ = {A(k)

k1 , . . . , A
(k)
kk , . . . ,A

(k)
kK}

have row dimension of mk, and similarly the blocks in the column-block stripe
A

(k)
∗k = {A(k)

1k , . . . ,A
(k)
kk , . . . ,A

(k)
Kk} have column dimension of nk. The x-vector

entries that are needed by processor Pk are represented as x̂(k) = [x̂
(k)
1 , . . . ,

x̂
(k)
k , . . . , x̂

(k)
K], a sparse column vector, where x̂

(k)
` contains only those entries

of x(`) of processor P` corresponding to the nonzero columns in A
(k)
∗` . Here,

the vector x̂
(k)
k is equivalent to x(k), defined according to the given partition

on the x-vector (hence the vector x̂(k) is of size at least nk). The y-vector
entries for which the processor Pk computes partial results are represented as
a sparse vector ŷ(k) = [ŷ

(1)
k , . . . , ŷ

(k)
k , . . . , ŷ

(K)
k], where ŷ

(`)
k contains only the

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 5

partial results for y(`) corresponding to the nonzero rows in A
(k)
`∗ . If a row

i in A(k) contains nonzeros only in columns corresponding to x(k), that is if
µ(aij) = Pk for all nonzero aij ∈ A(k), and µ(xi) = Pk, the row i is called a
local row from the perspective of the processor Pk. Similarly, if a column j in
A(k) contains nonzeros only in rows corresponding to ŷ

(k)
k , that is if µ(aij) = Pk

for all nonzero aij ∈ A(k), and µ(yi) = Pk, the column j is called a local column,
from the perspective of the processor Pk.

The standard parallel SpMxV algorithm [15, 27, 31] based on the described
nonzero and vector entry partitioning is called the row-column-parallel algo-
rithm. In this algorithm, each processor Pk executes the following steps.

1. For each ` 6= k, form and send sparse vector x̂(`)
k to processor P`, where x̂

(`)
k

contains only those entries of x(k) corresponding to the nonzero columns
in A

(`)
∗k .

2. In order to form x̂(k) = [x̂
(k)
1 , . . . , x̂

(k)
k , . . . , x̂

(k)
K], first define x̂

(k)
k = x(k).

Then, for each ` 6= k where A
(k)
∗` contains nonzeros, receive x̂

(k)
` from

processor P` = µ(x̂
(k)
`), corresponding to the nonzero columns in A

(k)
∗` .

3. Compute ŷ(k) ← A(k)x̂(k).
4. For each ` 6= k, send the sparse partial-results vector ŷ

(`)
k to processor

P` = µ(ŷ
(`)
k), where ŷ

(`)
k contains only those partial results for y(`) corre-

sponding to the nonzero rows in A
(k)
`∗ .

5. Receive the partial-results vector ŷ
(k)
` from each processor P` which has

computed a partial result for y(k), i.e., from each processor P` where A
(`)
k∗

has nonzeros.
6. Compute y(k) ←

∑
` ŷ

(k)
` , adding all the partial-results ŷ

(k)
` received in

the previous step to its own partial results for y(k).

There are two communication phases in this algorithm. The first one is just
before the local matrix-vector multiply, and it is due to the communication of
the x-vector entries (steps 1 and 2). This communication operations is referred
to as expand. If the matrix A is distributed columnwise, and the x-vector entries
are partitioned conformably with the column partition of A, then the expand
operation is not needed. The resulting algorithm is called the column-parallel
algorithm. The second communication phase is just after the local matrix-vector
multiply (steps 4 and 5), and it is due to the communication of the partial results
on the y-vector entries. This communication operation on the y-vector entries
is referred to as fold. If the matrix A is distributed rowwise, and the y-vector
entries are partitioned conformably with the rows of A, then the fold operation
is not needed. The resulting algorithm is called the row-parallel algorithm.

There are different implementations of the above algorithm. We summarize
three implementations with which we have experimented. Two of the implemen-
tations are in the well-known general libraries Trilinos [18] and PETSc [1, 2];
the third one, SpMV, is an in-house library [27].

Trilinos provides an implementation which can be described as in Algo-
rithm 1 from the point of view of the processor Pk. In this implementation,
the expand operations are finished before doing any computation. Then, all the
scalar multiply-add operations are performed. Later on, the fold operations are
completed. Trilinos uses Irecv/Isend and waitall communication primitives

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 6

Algorithm 1: ParSpMxV-Trilinos variant
Input: A, x, µ
Output: y

1 Send and Receive x vector entries so that each processor has the required
x-vector entries

2 Compute y(k)i ← aij xj for the local nonzeros, i.e., the nonzeros for which
µ(aij)=Pk

3 Send and Receive local nonzero partial results y(k)i to the processor
µ(yi) 6=Pk, for all nonzero y

(k)
i

4 Compute yi←
∑
y`i for each yi with µ(yi)=Pk

to handle the communications at steps 1 and 2 of Algorithm 1. It issues Irecvs,
performs Isends and then before commencing the computations ensures that
all in the incoming data is received by using the waitall operation.

Algorithm 2: ParSpMxV-Overlap-PETSc variant
Input: A, x, µ
Output: y

1 Send local xj (i.e., µ(xj)=Pk) to those processors that have at least one
nonzero in column j

2 Compute yki ← aij xj for the local nonzeros and local xj , i.e., the nonzeros for
which µ(aij)=Pk and µ(xj)= Pk

3 Receive all non-local xj (i.e., µ(xj) 6=Pk)
4 Compute yki ← yki +aij xj for the local nonzeros and non-local xj , i.e., the

nonzeros for which µ(aij) = Pk and µ(xj) 6= Pk

PETSc provides an implementation of the above algorithm only for the row-
parallel case. The Algorithm 2 summarizes that implementation from the point
of view of Pk. First, the expand operation is initiated using Irecv and Isend
primitives. Then, instead of waiting the reception of all necessary x-vector
entries, it performs some local computations so as to overlap communication
and computations. In particular, the processor Pk performs scalar multiply-add
operations using local aij ’s for which µ(xj) = Pk and there is no ai` with µ(x`) 6=
Pk. Then, upon verifying the reception of all needed x-vector entries using
waitall, Pk continues with scalar multiply-add operations with the nonzeros
on the rows that has at least one nonzero in a column j for which µ(x`) 6= Pk.
The implementation can also be seen in an earlier technical report [24]. Figure 1
describes the algorithm pictorially. After issuing Isends and Irecvs (for x̂(k)`),
processor Pk performs the computations associated with the horizontally shaded
matrix zone. Then, waitall is executed to have all x(k) before continuing with
the rows that are below the horizontal ones. Note that the local matrices are
actually permuted into the displayed form (local rows and the interface rows).
The advantage of this implementation with respect to the Algorithm 1 is that it
allows overlap between the reception of messages for the expand operation and
scalar multiply-add operations with the nonzeros in local rows.

Consider again the matrix A(k) of processor Pk as shown in Fig. 1. Before
executing the waitall operation, there are some more scalar multiply-add op-
erations that Pk can perform before the reception of any x̂(k)` . These operations

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 7

x(k) ∧
1 ... x(k) ∧

k ... x(k) ∧

K

y(k) ∧

Figure 1: The zones of the matrix A(k) of processor Pk with respect to the vector
x assuming a row-parallel algorithm. PETSc exploits communication-computation
overlap using only the horizontal zone. It is possible to use the hatched zone as well.
Furthermore, upon the reception of a message we have association computations to do
with the vertical zone.

are related to the nonzeros that are in the hatched zone in the figure. In order to
exploit the hatched zone for communication computation overlap, one can store
that zone in the compressed column storage (CCS) format. This way, one can
delay the invocation of the waitall operation for some more time. In fact, we
can get rid of the waitall operation and maximize the communication computa-
tion overlap by performing all scalar multiply-operations that involve a received
x-vector entry before waiting the reception of any other message. This requires
storing the vertically shaded zones of the matrix in Fig. 1 in CCS format: with
this, when Pk receives x̂(k)` , it can visit the respective column and perform all
operations. This way of storing the vertically shaded and hatched zones in CCS
maximizes the amount of overlap in the strict sense (optimal amount of overlap)
when a processor receives a single message from each sender (as should be the
case in a proper SpMxV code). The third library that we investigate in this work
SpMV [27] implements this approach for row-parallel and row-column parallel
algorithms. The row-column-parallel algorithm’s implementation of SpMV is
shown in Algorithm 3 for processor Pk.

Algorithm 3: ParSpMxV-Overlap
Input: A, x, µ
Output: y

1 Send local xj (i.e., µ(xj)=Pk) to those processors that have at least one
nonzero in column j

2 Compute yki ← aij xj for the local nonzeros and local xj , i.e., the nonzeros for
which µ(aij)=Pk and µ(xj)=Pk

3 while not all non-local xj received do
4 Receive non-local xj from any processor P` (i.e., µ(xj)=P`)
5 Compute yki ← yki +aij xj for the local nonzeros and process P`’s xj , i.e.,

the nonzeros for which µ(aij)=Pk and µ(xj)=P`

6 Send local nonzero partial results yki to the processor µ(yi) 6=Pk, for all
nonzero yki

7 while not all partial results y`i received do
8 Receive nonzero partial results set y` from any processor P`

9 Compute yi← yki +y`i for each yi ∈ y`

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 8

3 Summary of the existing partitioning models
and metrics

3.1 Hypergraph-based models for SpMxV
3.1.1 Hypergraph partitioning

A hypergraph H = (V,N) is defined as a set of vertices V and a set of nets
(hyperedges) N among those vertices. A net nj ∈ N is a subset of vertices, and
the vertices in nj are called its pins. A graph is a special hypergraph whose nets
have size two. We use pins[nj] and nets[vi] to represent the pins of a net nj , and
the set of nets that contain vertex vi, respectively. Vertices can be associated
with weights, denoted with w[·], and nets can be associated with costs, denoted
with c[·].

A K-way partition of a hypergraph H is denoted as Π = {V1,V2, . . . ,VK}
where each part is nonempty subset of V, they are pairwise disjoint, and their
union is equal to V. In a partition Π, a net that has at least one pin (vertex)
in a part is said to connect that part. The number of parts connected by a net
nj , i.e., connectivity , is denoted as λj . A net nj is said to be uncut (internal)
if it connects exactly one part (i.e., λj = 1), and cut (external), otherwise (i.e.,
λj > 1).

Let Wk denote the total vertex weight in Vk (i.e., Wk =
∑

v∈Vkw[v]) and
Wavg denote the weight of each part when the total vertex weight is equally
distributed (i.e., Wavg = (

∑
vi∈V w[vi])/K). If each part Vk ∈ Π satisfies the

balance criterion

Wk ≤Wavg(1 + ε), for k = 1, 2, . . . ,K (2)

we say that Π is balanced where ε represents the maximum allowed imbalance
ratio. The set of external nets of a partition Π is denoted as NE . Let χ(Π)
denote the cost, i.e., cutsize, of a partition Π. There are various cutsize defini-
tions [20]. The following two are the most relevant ones for this work:

χ(Π) =
∑

nj∈NE

c[nj] (3)

χ(Π) =
∑

nj∈N
c[nj](λj − 1) . (4)

In (3) and (4), the contributions of each cut net nj to the cutsize are c[nj] and
c[nj](λj − 1), respectively. The cutsize metric given in (3) will be referred to
here as cut-net metric and the one in (4) will be referred as connectivity metric.
Given ε and an integer K > 1, the hypergraph partitioning problem can be
defined as the task of finding a balanced partition Π with K parts such that
χ(Π) is minimized. The hypergraph partitioning problem is NP-hard [20].

3.1.2 Hypergraph models and methods for sparse matrix partition-
ing

There are three basic hypergraph models for sparse matrix partitioning: the
column-net hypergraph model, the row-net hypergraph model, and the fine-grain
model. Each of these models also directly corresponds to a partitioning method.

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 9

We will briefly describe these models below. It is also possible to develop other
partitioning methods, like jagged-like, checker-board, Mondriaan (a variant of
orthogonal recursive bisection) using these three basic models [6, 15, 30, 31] with
the standard hypergraph partitioning tools, such as PaToH [11] or Zoltan [7]. In
this work, among other partitioning methods we will only use the checker-board
method, because it is usually the best method to reduce the maximum number
of messages sent and received by a processor.

In the column-net hypergraph model [10] used for 1D rowwise partitioning,
an m×n matrix A with τ nonzeros is represented as a unit-cost hypergraph
HR=(VR,NC) with |VR|=m vertices, |NC |=n nets, and τ pins. In HR, there
exists one vertex vi ∈ VR for each row i of matrix A. Weight w[vi] of a vertex
vi is equal to the number of nonzeros in row i. The name of the model comes
from the fact that the columns are represented as nets. That is, there exists
one unit-cost net nj ∈ NC for each column j of matrix A. The net nj connects
the vertices corresponding to the rows that have a nonzero in column j. That
is, vi∈nj if and only if aij 6=0.

In the row-net hypergraph model [10] used for 1D columnwise partitioning,
an m×n matrix A with τ nonzeros is represented as a unit-cost hypergraph
HC= (VC ,NR) with |VC |=n vertices, |NR|=m nets, and τ pins. In HC , there
exists one vertex vj ∈ VC for each column j of matrix A. Weight w[vj] of a
vertex vj ∈ VR is equal to the number of nonzeros in column j. The name of
the model comes from the fact that the rows are represented as nets. That is,
there exists one unit-cost net ni ∈ NR for each row i of matrix A. The net
ni⊆VC connects the vertices corresponding to the columns that have a nonzero
in row i. That is, vj ∈ni if and only if aij 6=0.

In the fine-grain model [12], otherwise known as the column-row-net hyper-
graph model, used for 2D nonzero-based fine-grain partitioning, an m×n matrix
A with τ nonzeros is represented as a unit-weight and unit-cost hypergraph
HZ = (VZ ,NRC) with |VZ | = τ vertices, |NRC | = m+n nets and 2τ pins. In
VZ , there exists one unit-weight vertex vij for each nonzero aij of matrix A.
The name of the model comes from the fact that both rows and columns are
represented as nets. That is, in NRC , there exists one unit-cost row-net ri for
each row i of matrix A and one unit-cost column-net cj for each column j of
matrix A. The row-net ri connects the vertices corresponding to the nonzeros
in row i of matrix A, and the column-net cj connects the vertices corresponding
to the nonzeros in column j of matrix A. That is, vij ∈ ri and vij ∈ cj if and
only if aij 6=0.

Three standard partitioning methods are obtained by partitioning the ver-
tices of the hypergraphs generated by one of these models using the connectivity
metric (4): Column-Net (CN), Row-Net (RN) and Fine-Grain (FG). Each one
of those methods minimizes the total communication volume, while keeping the
balanced work.

The checker-board partitioning method (CB) [13] is a two-step method, where
each step models either the expand phase or the fold phase of the parallel
SpMxV. There are two alternative schemes for this partitioning method: the
one which models the expands in the first step and the folds in the second step,
and vice-versa. We describe the first one below (the other can be described
similarly). Given an m×n matrix A and the number K of processors organized
as aM×N mesh, first, A is partitioned row-wise intoM parts using the column-
net model, producing ΠR = {R1, . . . ,RM}. In the second step, the matrix A is

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 10

partitioned columnwise into N parts by using the multi-constraint partitioning
to obtain ΠC = {C1, . . . , CN}. The rowwise and columnwise partitions ΠR and
ΠC together define a 2D partition of the matrix A, where µ(aij) = Pk,` ⇔
ri ∈ Rk and cj ∈ C`. The multi-constraint formulation is used to achieve load
balance among processors. In this formulation, each vertex vi of HC is assigned
M weights w[i, k], for k = 1, . . . ,M . Here, w[i, k] is equal to the number of
nonzeros of column ci in rowsRk. Consider anN -way partitioning ofHC withM
constraints using the vertex weight definition above. Maintaining theM balance
constraints (each individual constraint treated as separate balance constraint)
corresponds to maintaining computational load balance on the processors of
each row of the processor mesh. Establishing the equivalence between the total
communication volume and the sum of the cutsizes of the two partitions is
fairly straightforward. The volume of communication for the fold operations
corresponds exactly to the χ(ΠC). The volume of communication for the expand
operations corresponds exactly to the χ(ΠR).

3.2 Partitioning metrics
We investigate the practical effects of partitioning models on several metrics.
These metrics include the maximum number of nonzeros assigned to a proces-
sor (MaxNnz), the total communication volume (TotVol), the maximum send
volume of a processor (MaxSV), the total number of messages (TotMsg), and
the maximum number of messages sent by a processor (MaxSM). We will also
analyze how these metrics are related with the SpMxV performance.

As can be expected, most of our results are based on experiments and their
careful analysis (see the next section). Yet, there are some theoretical results
worth mentioning. In 1D partitioning, the maximum number of messages can
be as high as K − 1, and the total number of messages can be K times larger.
In the fine-grain model the maximum number of messages can be as high as
2 × (K − 1), and the total number of messages as can be, again, K times
larger. When a checker-board partitioning is used for distributing a matrix into
K = MN processors, each processor only communicates with up to M − 1 and
N − 1 processors in the expand and fold phases. Since the checker-board model
is more restricted, the total communication volume is expected to be larger.

4 Experimental results
We carried our experiments on a 64-node cluster where each node has a 2.27GHz
dual quad-core Intel Xeon (Bloomfield) CPU and 48GB main memory. Each
core in a socket has 64KB L1 and 256KB L2 caches, and each socket has an
8MB L3 cache shared by 4 cores. The interconnection network is 20Gbps DDR
InfiniBand. For parallelism, mvapich2 version 1.6 is used. We built SpMV,
PETSc, and Trilinos with gcc 4.4.4 and used optimization flag -O3. For PETSc
experiments, we used the matrix type MPIAIJ and the multiplication routine
MatMult. Since each node has 8 cores, we have 512 processors in total. In the
experiments, we use K ∈ {1, 8, 16, 32, 64, 128, 256, 512}. For an experiment with
K 6= 1 processors, we fully utilize K/8 nodes of the cluster. To measure the time
of one SpMxV operation (in secs), we do 500 multiplications for each execution.
The values in the tables and figures are the averages of these 500 runs.

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 11

Matrix Description n τ

atmosmodl Atmospheric model. 1,489,752 10,319,760
TSOPF_RS Optimal pow. flow 38,120 16,171,169
Freescale1 Semiconductor sim. 3,428,755 17,052,626
rajat31 Circuit sim. 4,690,002 20,316,253
RM07R Comp. fluid dyn. 381,689 37,464,962
cage15 DNA electrophoresis 5,154,859 99,199,551
HV15R 3D engine fan 2,017,169 283,073,458
mesh-1024 5-point stencil 1,048,576 5,238,784
mesh-2048 5-point stencil 4,194,304 20,963,328
mesh-4096 5-point stencil 16,777,216 83,869,696

Table 1: Properties of the experiment matrices.

We used seven large real-life square matrices from different application do-
mains that are available at the University of Florida (UFL) Sparse Matrix Col-
lection (http://www.cise.ufl.edu/research/sparse/matrices) and three syn-
thetically generated matrices corresponding to 5-point stencil meshes in 2D with
sizes 1024× 1024, 2048× 2048, and 4096× 4096. The properties of the matrices
are given in Table 1.

To generate the partitions with respect to column-net (CN), row-net (RN),
fine grain (FG), and checkerboard (CB) models, we used PaToH [11] with the
connectivity metric (4), i.e., aiming to minimize TotVol, and 0.03 as the max-
imum imbalance. We also used a block partitioning (BL) model to generate
rowwise partitions of the matrices. In this model, we traverse the rows from
1 to m, generate a part with approximately τ/K nonzeros, and continue with
the next part when this number is exceeded. Experimental results show that
the average imbalance ratio of the partitions generated with BL is around 10−4

which is two order magnitude smaller than what we allowed in other partitioning
methods. The model does not take any other partitioning metric into account.
For matrices based on 2D meshes, we used another rowwise partitioning model
called MP. This model tiles the 2D plane with a diamond-like shape [4, Section
4.8] and associates each shape with a processor. This approach balances the
volume and the number of messages the processors send and receive. In the
experiments on real-life matrices, we use PETSc with rowwise models CN and
BL, and SpMV and Trilinos with all models except MP. For meshes, we added
MP to each library’s model set.

Let us start with two small experiments on mesh-based matrices to demon-
strate that the partitioning metrics are relevant. In the first experiment, we use
MP which allows us to obtain the same MaxNnz, MaxSV, and MaxSM values
for different number of processors (K) and mesh sizes. We exploit this to ob-
serve the effect of TotVol and TotMsg on the execution time as Table 2 shows.
In this table, from one row to the other, only TotVol and TotMsg change. Yet,
the execution time of each library increases significantly when TotVol increases
from 8,200 to 131,296, and TotMsg increases from 40 to 752. Hence, a good
partitioning with minimized metrics would reduce the execution time.

In the second experiment, we compared the metrics and execution times
of Trilinos on mesh-based matrices when models BL and MP are used. Since
MP takes TotVol and MaxNnz into account, and BL only deals with the latter,
there is a drastic difference between mean TotVol and MaxSV values of these
two models in favor of MP as Figure 2 shows. However, due to the banded

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 12

mesh- K TotVol TotMsg SpMV PETSc Trilinos
1,024 8 8,200 40 2.24 2.03 2.20
2,048 32 32,816 184 2.26 2.07 2.49
4,096 128 131,296 752 2.71 2.45 2.75

Table 2: Effect of partitioning metrics TotVol and TotMsg on execution times (in sec)
for mesh-based matrices using the MP partitioning model. From one row to the other,
among the partitioning metrics only TotVol and TotMsg change.

8 32 128 512
0

0.5

1

1.5

2

2.5
x 10

6

K

BL
MP

(a) TotVol

8 32 128 512
0

1000

2000

3000

4000

5000

K

(b) MaxSV

8 32 128 512
0

1000

2000

3000

4000

K

(c) TotMsg

8 32 128 512
0

1

2

3

4

5

6

K

(d) MaxSM

8 32 128 512
0

2

4

6

8

10

12

K

(e) Exec. Time

Figure 2: Partitioning metrics and corresponding mean execution time for an SpMxV
operation in Trilinos on mesh-based matrices when models BL and MP are used.

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 13

8 ≤ K ≤ 64 128 ≤ K ≤ 512
Metric SpMV PETSc Trilinos SpMV PETSc Trilinos
MaxNnz 8.02 7.81 6.80 0.49 0.44 0.83
TotVol 0.18 0.38 1.00 0.39 0.36 1.06
MaxSV 1.66 1.53 2.20 0.00 0.00 0.11
TotMsg 0.15 0.28 0.00 7.90 8.03 4.51
MaxSM 0.00 0.00 0.00 1.22 1.18 3.49

Table 3: Regression analysis of SpMV, PETSc and Trilinos with all matrices and
models CN and BL.

structure of mesh-based matrices, BL obtains much less TotMsg and MaxSM
values. The mean execution times of Trilinos employing these models are given
in Fig. 2e. As the experiment shows, the total latency has a larger performance
impact on Trilinos on these matrices in our system for larger processor counts,
whereas the total volume of messages seems to be important for smaller number
of processors. Clearly, one has to determine which metric is the most important
for a given number of processors for a given algorithm. Below, we carry out a
careful regression analysis of the metrics for different algorithms.

4.1 Regression analysis
To evaluate the performance of the libraries with respect to the partitioning
metrics, we use linear regression analysis techniques and solve the nonnegative
least squares problem (NNLS). In NNLS, given a variable matrix V and a vector
t, we want to find a dependency vector d which minimizes ‖Vd− t‖ s.t. d ≥ 0.
In our case, V has five columns which correspond to the partitioning metrics
MaxNnz, TotVol, MaxSV, TotMsg, and MaxSM. Each row of V corresponds
to an SpMxV execution where the execution time is put to the corresponding
entry of t. Hence, we have the same V but a different t for each library.
We apply a well-known technique in regression analysis and standardize each
entry of V by subtracting its column’s mean and dividing it to its column’s
standard deviation so that the mean and the standard deviation of each column
become 0 and 1, respectively. This way, the units are removed and each column
becomes equally important throughout the analysis. We then used MATLAB’s
lsqnonneg to solve NNLS. Each entry of the output di shows the dependency of
the execution time to the partitioning metric corresponding to the ith column
of V. Tables 3, 4, and 5 show the dependency values found in various settings.

We first apply regression analysis to each library with all matrices and row-
wise partitioning models CN (column-net) and BL (block). The analysis shows
that when K ≤ 64, SpMxV performance depends rigorously on the maximum
number of nonzeros assigned to a processor. In this case, the dependency values
for MaxNnz are 8.02, 7.81, and 6.80 for SpMV, PETSc, and Trilinos, respec-
tively. As Table 3 shows, the next important metric is MaxSV with values 1.66,
1.53, and 2.20. The latency-based partitioning metrics (TotMsg and MaxSM)
do not effect the performance for K ≤ 64. However, when K gets larger, these
metrics are of utmost importance. Furthermore, the importance of MaxNnz
decreases drastically for all the libraries. For SpMV and PETSc, MaxNnz be-
comes the 3rd important variable, whereas for Trilinos, it is the 4th. This shows
that SpMV and PETSc handle the increase in the communication metrics better

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 14

than Trilinos.
When K ≥ 128, the dependency of Trilinos to TotMsg is much less than

that of SpMV and PETSc. On the contrary, Trilinos’ MaxSM dependency is
almost 1.75 times more than SpMV and PETSc. This is expected since Trilinos
uses Algorithm 1 which has no communication-computation overlap due to the
use of waitall primitive. Such primitives can cause close coupling among the
processors. When MaxNnz and the variance on the number of messages per
processor are large, the overhead due to the bottleneck processor can result in
poor SpMxV performance. Note that the dependency profiles of SpMV and
PETSc, which are similar due to the communication-computation overlap in
Algorithms 2 and 3, do not point out a similar bottleneck.

8 ≤ K ≤ 32 64 ≤ K ≤ 128 256 ≤ K ≤ 512
Metric SpMV Trilinos SpMV Trilinos SpMV Trilinos
MaxNnz 8.43 7.54 2.75 2.52 0.00 0.02
TotVol 0.23 0.89 0.52 1.94 0.38 0.98
MaxSV 1.35 1.57 1.57 1.69 0.04 0.50
TotMsg 0.00 0.00 4.66 2.38 6.24 3.06
MaxSM 0.00 0.00 0.49 1.47 3.34 5.44

Table 4: Regression analysis of SpMV and Trilinos with all matrices and partitioning
models. PETSc is not shown in this table because it cannot handle all partitioning
schemes.

We extend the regression analysis to all matrices and all partitioning mod-
els and show the results in Table 4. The performance of SpMV and Trilinos
rigorously depend on MaxNnz if K ≤ 32, and on TotMsg and MaxSM when
K ≥ 256. Once again, Trilinos’ MaxSM dependency is higher than that of
SpMV due to the waitall primitive. To see the effect of matrix structure on
regression analysis, we use only mesh-based matrices in the next experiment.
As Table 5 shows, we observe that for these matrices, the performance of SpMV
and Trilinos mostly depend on MaxNnz even when K ≥ 64. Note that these
matrices are banded and the communication metrics have relatively lower val-
ues compared to those of real-life matrices. Hence, the most dominant factor is
MaxNnz.

8 ≤ K ≤ 32 64 ≤ K ≤ 128 256 ≤ K ≤ 512
Metric SpMV Trilinos SpMV Trilinos SpMV Trilinos
MaxNnz 8.97 9.38 8.83 9.05 5.10 5.47
TotVol 0.00 0.00 0.00 0.24 0.00 0.00
MaxSV 0.72 0.48 0.43 0.09 0.92 0.52
TotMsg 0.00 0.00 0.42 0.07 0.42 0.99
MaxSM 0.31 0.14 0.33 0.55 3.55 3.02

Table 5: Regression analysis of SpMV and Trilinos with mesh-based matrices and all
partitioning models.

In the light of the regression analysis experiments, we can argue that parti-
tioning metrics in fact effect the performance of parallel SpMxV libraries. How-
ever, the best metric (or function of metrics) that needs to be minimized depends
on the number of processors, the size and structure of the matrix, which we are
planning to investigate as a future work, and even the library itself. Although
some of these variables are known while generating the partitions, predicting the

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 15

others may need a preprocessing phase. For example, we already know that the
libraries in this paper are employing point-to-point communication primitives
which makes the connectivity metric suitable. However, if collective communi-
cation primitives, e.g., MPI_ALLGATHER, had been used, it would be better to
minimize the cut-net metric as the main partitioning objective (however, we
should note that such collective operations introduce unnecessary synchroniza-
tion and messages especially for large K values). On the other hand, the matrix
structure can be different for each input and a partitioner needs either a manual
direction or a preprocessing to predict the best metric for each matrix.

4.2 Effects of vector partitioning
For parallel y ← Ax with nonzero-to-processor and vector-entry-to-processor
assignment µ, we assume the following: µ(xj) (or µ(yi)) is equal to P`, then
there exists a nonzero aij assigned to processor P`. Although vector-entry-to-
processor assignments affect most of the communication metrics such as MaxSV
and TotMsg, under this assumption, TotVol is not one of them. To minimize
either of the partitioning metrics MaxSV and TotMsg while keeping TotVol con-
stant, we use a simple vector-partitioning heuristic. The heuristic traverses each
vector entry and sets µ(xj) (or µ(yi)) to P` if the assignment causes the mini-
mum increase in the concerned metric and P` is assigned at least one nonzero
aij .

Figure 3 shows the mean execution times of the libraries with the vector-
partitioning heuristic minimizing either MaxSV or TotMsg. We observed that
nearly for all libraries and partitioning models, minimizing TotMsg is more
important than minimizing MaxSV for reducing the execution time, especially
when K is large. The difference is more clear in Fig. 3b. Starting from K = 64,
the difference becomes obvious in favor of TotMsg which is concordant with the
regression analyses. For K ∈ {8, 16}, minimizing MaxSV or TotMsg seem to be
equally important.

4.3 Effects of models on metrics
All the partitions used in this work are generated with the objective of minimiz-
ing TotVol and balancing the load for a good MaxNnz. To partition x and y,
we used the greedy heuristic described above. Since minimizing TotMsg during
vector partitioning seems more promising, we will use that variant in the rest of
the paper. Here, we analyze the effect of the partitioning models on the metrics.
We do not include MaxNnz since it is in the (1 + ε) margin of Wavg.

The communication metrics vary with respect to the partitioning model as
Figure 4 shows for K = {32, 128, 512}. As expected, BL (block) partitioning
produces high TotVol and MaxSV (maximum send volume). However, due
to the irregular nonzero distributions in original matrices and with the help
of the vector partitioning heuristic, its mean TotMsg becomes minimum and
its MaxSM (maximum number of messages sent) is reduced to a number less
than those of CN (column-net), RN (row-net), and FG (fine-grain). The only
model which is better than BL is CB (checker-board) which also results in good
volume-related metrics. As expected, its mean MaxSV (maximum send volume)
and MaxSM values are much better than the others. The FG model has the
worst number of messages and the maximum number of messages. Note that

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 16

8 32 64 128 256 512

10
0

10
1

10
2

K

E
xe

cu
tio

n
tim

e

CN−MaxSV

RN−MaxSV

FG−MaxSV

CB−MaxSV

CN−TotMsg

RN−TotMsg

FG−TotMsg

CB−TotMsg

(a) SpMV

8 32 64 128 256 512

10
0

10
1

10
2

K

E
xe

cu
tio

n
tim

e

CN−MaxSV

CN−TotMsg

(b) PETSc

8 32 64 128 256 512

10
0

10
1

10
2

K

E
xe

cu
tio

n
tim

e

CN−MaxSV

RN−MaxSV

FG−MaxSV

CB−MaxSV

CN−TotMsg

RN−TotMsg

FG−TotMsg

CB−TotMsg

(c) Trilinos

Figure 3: Effect of the vector-partitioning heuristic minimizing MaxSV or TotMsg.
The horizontal and vertical axes show the #processors and the geometric means of
the execution times (secs) across all matrices in log scale, respectively.

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 17

K=32 K=128 K=512
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

CN
RN
FG
CB
BL

(a) TotVol
K=32 K=128 K=512

0

2

4

6

8

10

12
x 10

4

(b) MaxSV

K=32 K=128 K=512
0

0.5

1

1.5

2
x 10

4

(c) TotMsg
K=32 K=128 K=512

0

100

200

300

400

(d) MaxSM

Figure 4: Effects of partitioning models on metrics for matrices from real-life appli-
cations. The charts show the geometric mean of each metric w.r.t. the partitioning
model.

the relative performances of the models do not change with K. However, their
difference tend to increase and hence, the model used for partitioning becomes
more important as the parallel matrix-vector multiplication times of the libraries
show in Figure 5. As regression analysis experiments also prove, the models do
not effect the execution time when K is low. However, when K increases, the
effect becomes significant. In agreement with Fig. 5, for SpMV and Trilinos, the
CB model is the best one. This is expected since CB obtains a good model for
TotVol and TotMsg and is the best one for MaxSV and MaxSM. For PETSc,
CN is better than BL since CN’s volume-based performance is much better
while CN and BL are comparable for the latency-based metrics (TotMsg and
MaxSM). WhenK is increased from 128 to 256, the only significant reduction on
the execution time is obtained by SpMV with the CB model. This shows that
minimizing the right metric with the right partitioning model may be crucial if
one wants to use the available resources in their limits.

As Figure 6 shows, for mesh-based matrices, the effects of the partition-
ing models on TotVol and MaxSV are similar to the ones obtained for real-life
matrices. The BL model produces large communication volumes and all the
other models can obtain comparable TotVol values. But the relative MaxSV,
TotMsg, and MaxSM performance of CB gets worse due to the band structure
of the mesh-based matrices which is not suitable for a 2D distribution. For the
same reason, the rowwise model BL becomes the best one w.r.t. the latency-
based metrics (TotMsg and MaxSM). With BL-based partitioning, each proces-
sor sends at most 1 message throughout an SpMxV operation. The runtimes in
Fig. 7 are in agreement with these observations.

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 18

116 64 128 256 512
10

0

10
1

10
2

K

E
xe

cu
tio

n
tim

e

CN

RN

FG

CB

BL

(a) SpMV

116 64 128 256 512
10

0

10
1

10
2

K

E
xe

cu
tio

n
tim

e

CN

BL

(b) PETSc

116 64 128 256 512
10

0

10
1

10
2

K

E
xe

cu
tio

n
tim

e

CN

RN

FG

CB

BL

(c) Trilinos

Figure 5: Mean SpMxV times on real-life matrices in log scale for each library with
respect to partitioning model. The vector-partitioning heuristic in this experiment
tries to minimize TotMsg.

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 19

K=32 K=128 K=512
0

0.5

1

1.5

2

2.5
x 10

6

CN
RN
FG
CB
BL

(a) TotVol
K=32 K=128 K=512

0

1000

2000

3000

4000

5000

(b) MaxSV

K=32 K=128 K=512
0

1000

2000

3000

4000

5000

(c) TotMsg
K=32 K=128 K=512

0

10

20

30

40

(d) MaxSM

Figure 6: Effects of partitioning models on metrics for mesh-based matrices. The
charts show the geometric mean of each metric w.r.t. partitioning model.

Unlike the experiment with the real-life matrices, the mean execution times
significantly decrease till K goes to 512. Note that the average number of nonze-
ros in most of the real-life matrices and mesh-based matrices are comparable
to each other. However, the band structure of the mesh-based matrices yields
lower metrics as shown in Figure 6. Hence, the communication overhead for
these matrices is smaller compared with that of real-life matrices. We observed
that this is the main reason of better scalability.

5 Related work
Partitioning literature is a rich one. Here we provide a small survey of related
work that we believe characterizes major partitioning approaches. Earlier ap-
proaches to sparse matrix partitioning concern only the computational load of
processors, without paying attention to the effect of sparsity in communication.
These approaches are discussed in some recent as well as older studies [3, 17, 21–
23, 25]. Even though those methods would yield fairly good load balance, they
rely on inherent ordering of matrix rows and columns for reducing the communi-
cation cost—which can be arbitrary. To alleviate this problem, first graph-based
models have been proposed, later hypergraph-based models have been developed
to overcome limitations of graph models [16].

The first use of the hypergraph partitioning methods for efficient parallel
sparse matrix-vector multiply operations dates from mid 90s [9]. A more com-
prehensive study [10] describes the use of the row-net and column-net hyper-
graph models in 1D sparse matrix partitioning. The vector partitioning problem
that complements the hypergraph partitioning is a recent one [5, 26, 28].

A fair treatment of parallel sparse matrix-vector multiplication, analysis and

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 20

116 64 128 256 512
10

−1

10
0

10
1

10
2

K

E
xe

cu
tio

n
tim

e

CN

RN

FG

CB

BL

(a) SpMV

116 64 128 256 512
10

−1

10
0

10
1

10
2

K

E
xe

cu
tio

n
tim

e

CN

BL

(b) PETSc

116 64 128 256 512
10

−1

10
0

10
1

10
2

K

E
xe

cu
tio

n
tim

e

CN

RN

FG

CB

BL

(c) Trilinos

Figure 7: Mean SpMxV times on mesh-based matrices in log scale for each library with
respect to partitioning model. The vector-partitioning heuristic in this experiment
tries to minimize TotMsg.

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 21

investigations on certain matrix types along with the use of hypergraph parti-
tioning is given in [4, Chapter 4]. Further analysis of hypergraph partitioning
on some model problems is given in [29].

Some different methods for sparse matrix partitioning using hypergraphs can
be found in [30], including jagged-like and checkerboard partitioning methods,
and in [31], the orthogonal recursive bisection approach. A recipe to choose a
partitioning method for a given matrix is given in [15].

All of the studies mentioned above uses static partitioning. A recent work [19]
presents a dynamic partitioning but requires the matrix to be duplicated on all
processors; which is infeasible in many applications and hence will not scale.

Most of these studies are more theoretical and comparisons presented on
these studies are in terms of one or two partitioning metrics. Our work differs
from those by mainly being a through experimental analysis paper. To the best
of our knowledge, our paper is the first one that actually compares all such
partitioning methods and metrics, using state-of-the-art software packages.

We did not take the performance difference between intra-node and inter-
node communication operations. In recent work [14], Çatalyürek et al. discuss
the relevance of hypergraph partitioning methods in shared memory paralleliza-
tion of a SpMxV-like algorithm. In particular, they show that connectivity-1
metric (which corresponds to the total communication volume in a distributed
memory SpMxV) corresponds to the total size of the private arrays used in a
possible shared memory implementation. In other words, although there are dif-
ferences between the metrics optimized by partitioning algorithms for different
computing environments, the same partitioning make sense for both implemen-
tations, and hence for a hybrid implementation. We did not touch this issue yet
but there are on going work by, among others, Byun et al. [8] and Yzelman and
Roose [32].

6 Conclusion
We have carried out a detailed study to understand the importance of parti-
tioning models and their effects in parallel SpMxV operations. As mentioned in
the experiments, minimizing the right metric with the right partitioning model
may be crucial to increase throughput. For example, for the real-life matrices in
our test set, CB model is the only one which can obtain a significant reduction
on the SpMxV time when K is increased from 128 to 256 (after that we did
not see any speed up). It is obvious that the other models fail to obtain such a
reduction since the gain by dividing MaxNnz by two does not compensate the
communication overhead induced by multiplying K by two. Hence, assuming
the communication overhead is doubled on the average, doubling K increases
the relative importance of communication on SpMxV four times.

Matrices from today’s scientific and industrial applications can be huge. If
one has only a few processors, partitioning may not matter, since the con-
tribution of communication to the execution time will be low and the overall
improvement on SpMxV via a good partitioning will be insignificant. However,
as the regression analyses of Section 4.1 show, after a number of processors, the
communication overhead will start to dominate the SpMxV time. For our ex-
periments, this number is somewhere between 32 and 64, and it depends on the
characteristics of the matrix, the library and the architecture used for SpMxV

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 22

operations. Although it may be more than 64, considering the advancements on
CPU hardware, we can easily argue that this number will remain highly prac-
tical and partitioning will matter more for systems that are larger than those
considered here.

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 23

Bibliography
[1] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient man-

agement of parallelism in object oriented numerical software libraries. In
E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software
Tools in Scientific Computing, pages 163–202. Birkhäuser Press, 1997.

[2] S. Balay, J. Brown, , K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang.
PETSc users manual. Technical Report ANL-95/11 - Revision 3.2, Argonne
National Laboratory, 2011.

[3] R. H. Bisseling. Parallel iterative solution of sparse linear systems on a
transputer network. In A. E. Fincham and B. Ford, editors, Parallel Com-
putation, volume 46, pages 253–271. Oxford University Press, Oxford, UK,
1993.

[4] R. H. Bisseling. Parallel Scientific Computation: A Structured Approach
using BSP and MPI. Oxford University Press, Oxford, UK, Mar. 2004.

[5] R. H. Bisseling andW. Meesen. Communication balancing in parallel sparse
matrix-vector multiplication. Electron. Trans. Numer. Anal., 21:47–65,
2005.

[6] R. H. Bisseling, B. O. F. Auer, A. Yzelman, T. van Leeuwen, and Ü. V.
Çatalyürek. Two-dimensional approaches to sparse matrix partitioning. In
U. Naumann and O. Schenk, editors, Combinatorial Scientific Computing,
chapter 12. CRC Press, 2012.

[7] E. Boman, K. Devine, R. Heaphy, B. Hendrickson, V. Leung, L. A. Riesen,
C. Vaughan, U. Catalyurek, D. Bozdag, W. Mitchell, and J. Teresco. Zoltan
3.0: Parallel Partitioning, Load Balancing, and Data-Management Ser-
vices; User’s Guide. Sandia National Laboratories, Albuquerque, NM,
2007. Tech. Report SAND2007-4748W.

[8] J.-H. Byun, R. Lin, J. W. Demmel, and K. A. Yelick. pOSKI: Parallel
Optimized Sparse Kernel Interface Library User’s Guide for Version 1.0.0.
Berkeley Benchmarking and Optimization (BeBOP) Group University of
California, Berkeley, 2012.

[9] Ü. V. Çatalyürek and C. Aykanat. A hypergraph model for mapping re-
peated sparse matrix-vector product computations onto multicomputers.
In HiPC’95, 1995.

[10] Ü. V. Çatalyürek and C. Aykanat. Hypergraph-partitioning-based decom-
position for parallel sparse-matrix vector multiplication. IEEE T. Parall.
Distr., 10(7):673–693, Jul 1999.

[11] Ü. V. Çatalyürek and C. Aykanat. PaToH: A Multilevel Hypergraph
Partitioning Tool, Version 3.0. Bilkent University, Department of Com-
puter Engineering, Ankara, 06533 Turkey. PaToH is available at http:
//bmi.osu.edu/~umit/software.htm, 1999.

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 24

[12] Ü. V. Çatalyürek and C. Aykanat. A fine-grain hypergraph model for 2D
decomposition of sparse matrices. In IPDPS’01, San Francisco, CA, 2001.

[13] Ü. V. Çatalyürek and C. Aykanat. A hypergraph-partitioning approach for
coarse-grain decomposition. In Supercomputing’01, 2001.

[14] Ü. V. Çatalyürek, K. Kaya, and B. Uçar. On shared-memory parallelization
of a sparse matrix scaling algoritm. In ICPP’12, Pittsburgh, PA, 2012.

[15] Ü. V. Çatalyürek, C. Aykanat, and B. Uçar. On two-dimensional sparse
matrix partitioning: Models, methods, and a recipe. SIAM J. Sci. Comput.,
32(2):656–683, 2010.

[16] B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel
computing. Parallel Comput., 26:1519–1534, 2000.

[17] B. Hendrickson, R. W. Leland, and S. Plimpton. An efficient parallel al-
gorithm for matrix-vector multiplication. Int. J. High Speed Com., 7(1):
73–88, 1995.

[18] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,
T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps,
A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley. An overview of the trilinos project. ACM
Trans. Math. Softw., 31(3):397–423, 2005.

[19] S. Lee and R. Eigenmann. Adaptive runtime tuning of parallel sparse
matrix-vector multiplication on distributed memory systems. In Super-
computing’08, pages 195–204, New York, NY, USA, 2008. ACM.

[20] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout.
Wiley–Teubner, Chichester, U.K., 1990.

[21] J. G. Lewis and R. A. van de Geijn. Distributed memory matrix-vector
multiplication and conjugate gradient algorithms. In Supercomputing’93,
pages 484–492, New York, NY, USA, 1993. ACM.

[22] A. T. Ogielski and W. Aiello. Sparse matrix computations on parallel
processor arrays. SIAM J. Sci. Comput., 14(3):519–530, 1993.

[23] A. Pınar and C. Aykanat. Fast optimal load balancing algorithms for 1D
partitioning. J. Parallel Distr. Com., 64:974–996, 2004.

[24] Y. Saad and A. V. Malevsky. P-SPARSLIB: A portable library of dis-
tributed memory sparse iterative solvers. Technical Report umsi-95-180,
Minnesota Supercomputer Institute, Minneapolis, MN, Sep. 1995.

[25] E. Saule, E. Ö. Baş, and Ü. V. Çatalyürek. Load-balancing spatially located
computations using rectangular partitions. J. Parallel Distr. Com., 72(10):
1201–1214, 2012.

[26] B. Uçar and C. Aykanat. Encapsulating multiple communication-cost met-
rics in partitioning sparse rectangular matrices for parallel matrix-vector
multiplies. SIAM J. Sci. Comput., 25(6):1837–1859, 2004.

RR n° 8301

Partitioning for Parallel Sparse Matrix-Vector Multiplication 25

[27] B. Uçar and C. Aykanat. A library for parallel sparse matrix-vector multi-
plies. Technical Report BU-CE-0506, Department of Computer Engineer-
ing, Bilkent University, Ankara, Turkey, 2005.

[28] B. Uçar and C. Aykanat. Revisiting hypergraph models for sparse matrix
partitioning. SIAM Rev., 49(4):595–603, 2007.

[29] B. Uçar and Ü. V. Çatalyürek. On the scalability of hypergraph models for
sparse matrix partitioning. In M. Danelutto, J. Bourgeois, and T. Gross,
editors, Euromicro’10, pages 593–600. IEEE Computer Society, Conference
Publishing Services, 2010.

[30] B. Uçar, Ü. V. Çatalyürek, and C. Aykanat. A matrix partitioning interface
to PaToH in MATLAB. Parallel Comput., 36(5-6):254–272, 2010.

[31] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution
method for parallel sparse matrix-vector multiplication. SIAM Rev., 47(1):
67–95, 2005.

[32] A. N. Yzelman and D. Roose. High-level strategies for parallel shared-
memory sparse matrix–vector multiplication. Technical Report TW614,
KU Leuven, June 2012.

RR n° 8301

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

